簡易檢索 / 詳目顯示

研究生: 朱冠宇
Kuan Yu Chu
論文名稱: 溶菌酶展開的熱力學性質與模型的探討
A Study on the Model of the Unfolding of Lysozyme and its Thermodynamic Properties
指導教授: 林聖賢
Lin, Sheng-Hsien
林震煌
Lin, Cheng-Huang
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 93
中文關鍵詞: 溶菌酶蛋白質展開模型螢光光譜圓光二向光譜
英文關鍵詞: Lysozyme, Two state model, Ising model, temperature induced unfolding, denaturant induced unfolding, Fluorescence spectrum, circular dichroism spectrum
論文種類: 學術論文
相關次數: 點閱:277下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 蛋白質結構與其生理功能的完整性息息相關,處於正常折疊狀態下的蛋白質可以有效發揮其生理功能且十分穩定,但不正常的折疊會造成蛋白質失去其功能並且處於較不穩定的狀態,一些疾病如阿茲海默症與狂牛病等等,其起因皆是蛋白質的摺疊錯誤。為了了解蛋白質摺疊與展開的機制,並且對這些疾病的形成能有進一步地瞭解,甚至可以成為於該疾病的預防或治療,在本研究中,利用本實驗室所提出的Ising model來描述每個蛋白質的展開行為。在本實驗室所建構的模型裡,我們將蛋白質視為由許多個單元σi(unit)所組成,每一個單元可以是肽鍵、胺基酸、雙硫鍵或任何蛋白質摺疊的單位,而每個單元只有兩個狀態,分別為自然摺疊狀態或展開狀態,而不同的單元卻擁有相同的熱力學性質,則可以將這幾個單元視為相同一個摺疊子。在實驗上,我們選用溶菌酶當做研究對象,藉由加入變性劑或提高溫度,讓溶菌酶逐漸展開,並利用螢光光譜還有圓光二向光譜對溶菌酶做偵測,藉以得知細溶菌酶展開時局部結構的變化,我們發現Ising model可以成功地描述了在實驗上所得到的數據,結果顯示這二種光譜所偵測到的過渡曲線在不同的環境下會有所不同;並且可以將這二種光譜所測到的局部位置各視為數個單元,其中在螺旋結構局部位置(α-helix local site)可以視為三個單元所組成,而色氨酸局部位置(Trp local site)則可是為一個個別的單元,與傳統的兩態模型不同的是:藉由Ising model的擬合,不僅得知其局部位置的熱力學穩定度,而且還得知其局部位置與其他單元的作用力 J。並且藉由比較小角度散射的實驗,可以清楚明白的知道溶菌酶在展開時整個構型的改變,和光譜偵測的結果比較下,我們發現其展開的構型改變主要來自於螺旋結構局部位置展開的貢獻。

    It is well knowing that the function of a protein is related to its psychology properties. Knowing the folding-unfolding processes of proteins is helpful in the search for possible remedies to a disease that’s caused by protein misfolding such as Alzheimer’s disease. In order to study the thermodynamic properties of the unfolding of proteins, lysozyme was chosen as the model protein. Equilibrium unfolding behaviors of lysozyme, induced by the presence of urea,GdHCl or changed in temperature, were examined via different spectroscopic techniques, such as a fluorescence spectrometer and circular dichroism spectrometer. The local structural changes can be detected by those spectrometers. The experimental data was fitted successfully to the modified Ising model, and obtained the thermodynamic parameters for the unfolding of lysozyme at different environments. for example, the temperature induced denature free energy for each local site. The results indicated that there are several unfolding grouping in α-helix local site and only a group in Trp local site . By comparing the spectroscopic data with the data from small angle X-ray scattering, we found that the native lysozyme is close to an ellipsoid envelope. This envelope elongated gradually at higher temperature. However, during the unfolding of the α-helix local site and the Trp local site, the semi-major axis of lysozyme elongated dramatically, whereas the semi-minor axis stayed roughly the same.

    謝誌 1 中文摘要 2 英文摘要 3 目錄 4 圖目錄 6 表目錄 10 第一章、前言 11 第二章、樣品準備與實驗方法 31 2–1偵測原理 31 2–1–1螢光光譜對溶菌酶的偵測 31 2–1–2圓光二向光譜儀對溶菌酶的偵測 33 2–2樣品準備 35 2–2–1偵測溶菌酶溫度效應的樣品準備 35 2–2–1–1圓光二向光譜光譜的樣品準備 36 2–2–2偵測溶菌酶變性劑效應的樣品準備 37 2–3偵測色素蛋白C展開的實驗方法 38 2–3–1溫度效應的偵測 38 2–3–1–1圓光二向光譜偵測蛋白質展開溫度效應 38 2–3–2變性劑效應的偵測 39 2–4 數據處理 39 2–4–1對變性劑效應實驗數據的處理 39 2–4–2溫度效應實驗數據的處理 40 第三章、描述蛋白質展開的模型 43 3–1兩態模型描述蛋白質展開行為 43 3–2 Ising model描述蛋白質展開的原理 53 3–3 Regular protein描述蛋白質展開的原理 62 第四章、結果與討論 65 4–1 變性劑效應結果與討論 65 4–2 溫度效應結果與討論 77 第五章、結論 88 第六章、參考文獻 89 第七章、附錄 91

    1. Dobson C. M. ; Philos. Trans. R. Soc. B. 2001 , 356 , 133
    2. Shiu Y. J. ; Yeh Y. L. ; Liang K. K. ; Hayashi M. ; Mo Y. ; Yan Y. ; Lin S. H. ; J.Chin.Chem. Soc. 2004 , 51 , 1161.
    3. Varhac R. ; Antalik M. ; Bano M. ; J Biol Inorg Chem. 2004 , 9 , 12
    4. Latypov R. F. ; Cheng H. ; Roder N.A. ; J.Mol.Biol. 2006 , 357 , 1009.
    5. Maity H. ; Maity M. ; Krishna M. M. G. ; Mayne L. ; Englander S. W. ; Proc. Natl. Acad. Sci. USA. 2005 , 102 , 4741
    6. Fleming A. ; Proc Roy Soc Ser B 1992 93 306
    7. Blake C.C. ; Koenig D.F. ; Mair G.A. ; North A.C. ; Phillips D.C. ; Sarma V.R. ; Nature 2001 , 206 , 757
    8. JOHNSON L.N. ; PHILLIPS D. C. ; Nature 1995 , 206 , 761
    9. Kirby A.J. Nature structural biology 2001 , 8 , 737-739
    10. Privalov P. L. ; Khechinashvili N. N. ; J. Mol. Biol. 1974 , 86 , 665.
    11. Chen L.L. ; Hodgson K.O. ; Doniach S. ; J.Mol.Biol. 1996 , 261 , 658
    12. Sasahar K. ; Demura M. ; Nitta K. ; PROTEINS: Structure, Function, and Genetics 2002 , 49 , 472
    13. Sasahar K. ; Demura M. ; Nitta K. ; Biochemistry 2000 , 39 , 6475
    14. Ibarra-Molero B. ; Sanchez-Ruiz J.M. ; Biochemistry 1997 , 36 , 9616
    15. Yamamoto T. ; Fukui N. ; Hori A. ; Matsui Y. ; Journal of Molecular Structure 2006 , 782 , 60
    16. Krishna M. M. G. ; Maity H. ; Rumbley J. N. ; Lin Y. ; Englander S. W. ; J. Mol. Biol. 2006 , 359 , 1410.
    17. Bakk A. ; Hoye J. S. ; Physica A. 2003 , 323 , 504.
    18. Liang K. K. ; Hayashi M. ; Shiu Y. J. ; Mo Y. ; Shao J. ; Yan Y. ; Lin S. H. Phys. Chem. Chem. Phys. 2003 , 5 , 5300.
    19. Shiu Y. J. ; Jeng U. S. ; Su C. ; Huang Y. S. ; Hayashi M. ; Liang K. K. ; Yeh Y. L. ; Lin S. H. ; Journal of Applied Crystallography, 2007 , 40 , s195.
    20. Xu Q. ; Keiderling T. A.; Protein Science, 2004 , 13 , 2949
    21. Zhong L. ; Johnson W. C. ; Pro. Natl. Acad. Sci. 1992 , 89 , 4462.
    22. Waterhous A. V. ; Johnson W. C. ; Biochemistry. 1994 , 33 , 2121.
    23. Alison R. ; Bengt N. ; Circular Dichroism and Linear Dichroism
    24. Proctor V.A. ; Cunning F.E. ; CRC critical review in food science and Nutrition 1998 , 26 , 359
    25. Privalov P. L. ; FEBS Letter 1974 , 40 , s140.
    26. Eftink M.R. ; Ghirron C.A. ; Biochemistry 1976 , 15 , 672.
    27. Huang Y.S. ; Jeng U.S. ; Shiu Y.J. ; Lai Y.H. ; Sun Y.S. ; Journal of Applied Crystallography, 2007 , 40 , s165
    28. Glatter O. ; Kratky O. ; Small angle X-ray scattering Ch.1 and Ch. 2. 1983, London Academic Press
    29. Leninger A. Principles of biochemistry 4th edition
    30. Eaton W.A. ; Munoz V. ; Thompson P.A. ; Henry R. ; Hofrichter J. ; Acc.Chem.Res ; 1998, 31, 745
    31. Huang R. ; Setnicka V. ; Etienne M. A. ; Kim J. ; Kubelka J. ; Hammer R. P. ; Keiderling T.A. J.Am.Chem.Soc. 2007, 129, 13592
    32. Guo J. ; Harn N. ; Robbin A. ; Dougherty R. ; Middaugh C. R. Biochemistry 2006, 45, 8686
    33. Munoz V. ; Thompson P.A. ; Hofrichter J. ; Eaton W.A. Nature 1997, 390, 196
    34. Hauser K. ; Krejtschi C. ; Huang R. ; Wu L. ; Keiderling T.A. J.Am.Chem.Soc. 2008, 130, 2984
    35. Setnicka V. ; Huang R. ; Thomas L. ; Etienne M.A. ; Kubelka J. ; Hammer R.P. ; Keiderling T.A. ; J.Am.Chem.Soc. 2005, 127, 4992
    36. Matagne A. ; Dobson C.M. ; CMLS 1998, 54, 363
    37. Arial S. ; Hirai M. ; Biophysical journal, 1999, 76, 2129
    38. Yang W.Y. ; Gruebele M. ; J.Am.Chem.Soc., 2004, 126, 7785
    39. Takekiyo T. ; Wu L. ; Yoshimura Y. ; Shimizu A. ; Keiderling T.A. ; Biochemistry., 2009, 48, 1543
    40. Zhao C. ; Poavarapu P.L. ; Das C. ; Balaram P. ; J.Am.Chem.Soc., 2000, 122, 8228
    41. Hilario J. ; Kubelka J. ; Keiderling T.A. ; J.Am.Chem.Soc., 2003, 125, 7562
    42. Du D. ; Zhu Y. ; Huang C.Y. ; Gai F. ;PNAS, 2004, 101, 15915
    43. Bour P. ; Keiderling T.A. ; J. Phys. Chem. B, 2005, 109, 23678
    44. Hammed M. ; Ahmad B. ; Fazili K.J. ; Andrabi K. ;Khan R.H. ; J. Biochem, 2007, 141, 573
    45. Chowdhry B. ; Leharne S. ; Journal of chemical education, 1997, 74, 236

    無法下載圖示 本全文未授權公開
    QR CODE