簡易檢索 / 詳目顯示

研究生: 曹捷勛
Tsao, Jie-Shiun
論文名稱: 暗星,玻色子星與黑洞模仿者
Dark Stars, Boson Stars, and Black Hole Mimickers
指導教授: 林豐利
Lin, Feng-Li
口試委員: 劉國欽
Liou, Guo-Chin
陳樫旭
Chen, Chian-Shu
林豐利
Lin, Feng-Li
口試日期: 2022/07/22
學位類別: 碩士
Master
系所名稱: 物理學系
Department of Physics
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 53
中文關鍵詞: 重力波暗物質參數估計緻密星波色子星
英文關鍵詞: Gravitational Wave, Dark Matter, Parameter Estimation, Compact Stars, Boson Stars
DOI URL: http://doi.org/10.6345/NTNU202201340
論文種類: 學術論文
相關次數: 點閱:339下載:11
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • We are motivated by the recent LIGO/Virgo mass gap events, which either neutron stars or black holes cannot explain. We study the possibilities of the black hole mimickers formed by the dark matter with their equations of state extracted from the microscopic self-interaction bosonic field theories in the perfect fluid limit. Some of these scalar field theories are possible candidates for dark matters. The compact stars formed by these dark matter, called dark stars or boson stars, can help explain the LIGO/Virgo events such as the mass above gap ones. This work extensively studies the masses, radii, and tidal deformability for a list of compact boson stars and black hole mimickers.

    1 1.Introduction 3 1.1 Gravitational Wave 6 1.1.1 Detection 8 1.1.2 Parameter Estimation 9 1.1.3 Gap Events 10 1.2 Dark Matter 10 1.2.1 WIMPs and Axion 11 1.2.2 Self-Interacting Dark Matter 12 1.3 Boson Stars and Black Hole Mimickers 13 1.4 Stars Configuration 13 1.4.1 Tolman-Oppenheimer-Volkoff Equation 15 1.4.2 Tidal Deformation 17 2. Gravitational Wave Data Analysis 17 2.1 Matched Filter 19 2.2 Waveform Template 20 2.3 PyCBC Inference 23 3. Equation of State from Microscopic Dark Matter Model 24 3.1 Equation of State of Isotropic Limit of General Scalar Field 27 3.2 Dark Matter Model 28 3.2.1 General Boson Star 30 3.2.2 Liouville Boson Star 31 3.2.3 Cosh-Gordon Boson Star 31 3.2.4 Sine-Gordon Boson Star 32 3.2.5 Non-topological Soliton Star 35 4. Boson Stars and Black Hole Mimickers 35 4.1 Mass-Radius and TLN-Mass Relation 41 4.2 Scaling Symmetry of TOV 43 4.3 Gap Events 43 4.3.1 Upper Mass Gap: GW190521 44 4.3.2 Lower Mass Gap: GW190814 46 5. Conclusion and Discussion

    [1] Albert Einstein. N ̈aherungsweise integration der feldgleichungen der gravitation. Sitzungsber. K. Preuss. Akad. Wiss., 1:688, 1916.

    [2] Albert Einstein. U ̈ber gravitationswellen. Sitzungsber. K. Preuss. Akad. Wiss., page 154, 1918.

    [3] G. E. Moss, L. R. Miller, and R. L. Forward. Photon-noise-limited laser transducer for gravitational antenna. Appl. Opt., 10:2495, 1971.

    [4] F. Acernese et al. Advanced virgo: A second-generation interfermetric gravitational wave detector. Classical Quantum Gravity, 32, 2, 2014.

    [5] Y. Aso, Y. Michimura, Kentaro Somiya, Masaki Ando, Osamu Miyakawa, Takanori Sekiguchi, Daisuke Tasumi, and Hiroalo Yamamoto. Interferometer design of the kagra gravitational wave detector. Phys. Rev. D., 88, 043007, 2013.

    [6] C. Affeldt et al. Advanced techniques in geo600. Classical Quantum Gravity, 32, 22, 2014.

    [7] B. P. Abbott et. Al. (LIGO Scientific Collaboration and Virgo Collaboration). Ob- servation of gravitational waves from a binary black hole merger. Phys. Rev. Lett., 116, 061102, 2016.

    [8] B. P. Abbott et. Al. (LIGO Scientific Collaboration and Virgo Collaboration). Properties of the binary neutron star merger gw170817. Phys. Rev. X., 9, 011001, 2019.

    [9] R. Abbott et. Al. (LIGO Scientific Collaboration and Virgo Collaboration). Gw190521: A binary black hole merger with a total mass of 150 solar mass. Phys. Rev. Lett., 125. 101102, 2020.

    [10] R. Abbott et. Al. (LIGO Scientific Collaboration and Virgo Collaboration). Gw190814: Gravitational wave from the coalescence of a 23 solar mass black hole with a 2.6 solar mass compact object. Astrophys. J, 896: L44, 2020.

    [11] J. H. Oort. The force exerted by the stellar system in the direction perpindicular to the galactic plane and some related problems. Bullentn of the Astronomical Institutes of the Netherlands, vol.4:249, 1932.

    [12] Vera C. Rubin, Jr W. Kent Ford, and Norbeat Thonnard. Rotational properties of 21 sc galaxies with a large range of luminosities and radii, from ngc 4605 yo ugc 2885. The Astrophys. Journal, 238:471–487, 1980.

    [13] Douglas Clowe, Maruˇsa Bradaˇc, Anthony H. Gonzalez, Maxim Markevitch, Scott W. Randall, Christine Jones, and Dennis Zaritsky. A direct empirical proof of the existence of dark matter. Astrophys. J. Lett., 648:L109–L113, 2006.

    [14] G. Steigman and M. S. Turner. Cosmological constraints on the properties of weakly interacting massive particles. Nucl. Phys. B, 253, 375, 1985.

    [15] Steven Weinberg. A new light boson? Phys. Rev. Lett., 40:14–16, 2014.

    [16] David N. Sergel and Paul J. Steinhardt. Observational evidence for self-interacting cold dark matter. Phys. Rev. Lett., 84, 17, 2000.

    [17] Ann Nelson, Sanjay Reddy, and Dake Zhou. Dark halos around neutron stars and gravitational waves. JCAP, 07:012, 2019.

    [1 8] Andrea Madeline, Pantelis Pnigouras, Nulas Gronlund Nielsen, Chris Kouvaeis, and Kostas D. Kokkotas. Dark star: Gravitational and electromagnetic observables. Phys. Rev. D., 96, 023005, 2017.

    [19] Mercer R. A. et al. (LIGO and Virgo Scientific). Ligo algorithm library. 2017.

    [20] C. M. Biwer, Collin D. Capano, Soumi De, Miriam Cabero, Duncan A. Brown, Alexander H. Nitz, and V. Raymond. Pycbc inference: A python-based parameter estimation toolkit for compact binary coalescence signals. ASP, 131: 024503, Feb. 2019.

    [21] Gregory Ashton, Moritz Hu ̈bner, Paul D. Lasky, Colm Talbot, Kebdall Ackley, Sylvia Biscoveanu, Qi Chu, Atul Divakarla, Paul J. Easter, Boris Goncharv, Francisco Hernandex Vivanco, Jan Harms, Marcus E. Lower, Grant D. Meadors, Denyz Melchor, Ethan Payne, Matthew D. Pitkin, Jade Powell, Nikhil Sarin, Rory J. E. Smith, and Eric Thrane. Bilby: A user-friendly bayesian inference library for gravitational-wave astronomy. The Astrophys. J., 241, 2019.

    [22] Nelson Christensen and Renete Meyer. Markov chain monte carlo methods for bayesian gravitational radiation data analysis. Phys. Rev. D., 58, 082001, 1998.

    [23] S. E. Woosley. Pulsational pair-instability supernove. The Astrophys. Journal., 836:244, 2017.

    [24] B. P. Abbott et al.(LIGO Scientific Collaboration and Virgo Collaboration). Binary black hole population properties inferred from the first and second observing runs of advanced ligo and advanced virgo. The Astrophys. Jouranal. Lett., 882:L24, 2019.

    [25] Sean Tulin and Hai-Bo Yu. Dark matter self-interactions and small scale structure. Physics Report, 2017.

    [26] Monica Colpi, Stuart L. Shapiro, and Ira Wasserman. Boson stars: Gravitational equilibria of self-interactong scalar fields. Phys. Rev. Lett., 57, 2485, 1986.

    [27] Daniela P ́erez and Gustavo E. Romero. Black hole mimickers. Jan. 2016.

    [28] Nathan K. Johnson-McDaniel, Rahul Kashyap Arunava Mukherjee, Parameswaran Ajith, Walter Del Oizzi, and Salvatore Vitale. Constraining black hole mimickers with gravitational wave observations. Phys. Rev. D., 102, 123010, Dec. 2020.

    [29] Jos ́e P. S. Lemos and Oleg B. Zaslavskii. Black hole mimickers: Regular versus singular behavior. Phys. Rev. D., 78, 024040, Jul. 2008.

    [30] Richard C. Tolman. Static solutions of einstein’s field equations for spheres of fluid. Phys. Rev., 55, 364, Jan. 1939.

    [31] J. R. Oppenheimer and G. M. Volkoff. On massive neutron core. Phys. Rev., 55, 374, Jan. 1939.

    [32] Tanja Hinderer. Tidal love number of neutron stars. Astrophys. J, 677:1216–1220, 2008.

    [33] E ́annaE ́.FlanaganandTanyaHinderer.Constrainingneutron-startidallovenumbers with graivtational-wave detectors. Phys. Rev. D., 77, 021502, Jan. 2008.

    [34] Tullio Regge and John A. Wheeler. Stability of a schwarzschild singularity. Phys. Rev., 108, 1063, 1957.

    [35] Bruce Allen, Warren G. Anderson, Patrick R. Brady, Duncan A. Brown, and Jolien D. E. Creighton. Findchirp: An algorithm for detection of gravitational waves from inspiraling compact binaries. Phys. Rev. D, 85, 122006, 2013.

    [36] Alessandra Buonanno, Bala R. Iyer, Even Ochsner, Yi Pan, and B. S. Sathyaprakash. Comparison of post-newtonian templates for compact binary insprial signals in gravitational wave detectors. Phys. Rev. D., 80, 084043, 2009.

    [37] Sascha Husa, Sebastian Khan, Mark Hannam, Michael Pu ̈rrer, Frank Ohme, Xisco Jim ́enez Forteza, and Alejandro Boh ́e. Frequency-domain gravitational wave from nonprecrssing black-hole binaries. i. new numerical waveforms and anatomy of the signal. Phys. Rev. D., 93, 044006, 2016.

    [38] L. Santamar ́ıa, F. Ohme, P. Ajith, B. Bru ̈gmann, N. Dorband, M. Hannam, S. Husa, P. M ̈osta, D. Pollney, C. Reisswig, E. L. Robinson, J. Seiler, and B. Krishnan. Match- ing post-newtonian and numerical relativity waveforms: Systematic errors and a new phenomenological model for nonprecessing black hole binaries. Phys. Rev. D., 82, 064016, 2010.

    [39] Andrea Taracchini, Alessandra Buonanno, Yi Pan, Tanja Hinderer, Michael Boyle, Daniel A. Hemberger, Lawrence E. Kidder, Geoffrey Lovelace, Abdul H. Mrou ́e, Harakd P. Pfeiffer, Mark A. Scheel, B ́ela Szil ́agyi, Nicholas W. Taylor, and Anil Zhenginoglu. Effective-one-body model for black-hole binaries with generic mass ra- tios and spins. Phys. Rev. D., 89, 061502, 2013.

    [40] Mark Hannam, Patricia Schmidt, Alejandro Boh ́e, Leila Haegel, Sascha Husa, Frank Ohme, Geraint Pratten, and Michael Pu ̈rrer. Simple model of complete precessing black-hole-binary gravitational waveforms. Phys. Rev. Lett., 113, 151101, 2014.

    [41] Patricia Schmidt, Frank Ohme, and Mark Hannam. Towards models of gravitational waveforms from generic binaries: Ii. modelling precession effects with a single effective precession parameter. Phys. Rev. D., 91, 024043, 2014.

    [42] Sebastian Khan, Katerina Chatziioannou, Mark Hanna, and Frank Ohme. Phe- nomenological model for the gravitational-wave signal form precessing binary black holes with two-spin effects. Phys. Rev. D., 100.024059, 2019.

    [43] Lionel London, Sebastian Khan, Edward Fauchon-Jones, Cecilio Garc ́ıa, Mark Han- nam, Sascga Husa, Xisco Jim ́enez-Forteza, Chinmay Kalaghatgi, Frank Ohme, and Francesco Pannarale. First higher-multipole model of gravitational waves form spinning and coalescing black-hole binaries. Phys. Rev. Lett., 120.161102, 2018.

    [44] Tim Dietrich, Sebastiano Bernuzzi, and Wolfgang Tichy. Closed-form tidal ap- proximants for binary neutron star gravitational waveforms constructed from high- resolution numerical relativity simulations. Phys. Rev. D., 96, 121501, 2017.

    [45] Jonathan E. Thompson, Edward Fauchon-Jones, Sebastian Khan, Elisa Nitoglia, Francesco Pannarale, Tim Dietrich, and Mark Hannam. Modeling the gravitational wave signature of neutron star black hole coalescences. Phys.Rev.D, 101.124059, 2020.

    [46] Francesco Pannarale, Emanuele Berti, Koutarou Kyutoku, Benjamin D. Lackey, , and Masaru Shibata. Aligned spin neutron star-black hole mergers: A gravitational waveform amplitude model. Phys. Rev. D, 92.084050, 2015.

    [47] W. D. Vousden, W. M. Farr, and I. Mandel. Dynamic temperature selection for parallel tempering in markov chain monte carlo simulations. Monthly Notices of the Royal Astrophysical Society, 455:1919–1937, 2016.

    [48] Franz E. Schunck and Eckehard W. Mielke. General relativistic boson star. Class. Quant. Grav., 20, 2003.

    [49] Franz E. Schunck and Diego F. Torres. Boson stars with generic self-interactions. Int. J. Mod. Phys. D., Vol 9, No. 5:601–618, 2000.

    [50] R. Feiedberg, T. D. Lee, and Y. Peng. Scalar soliton strars and black holes. Phys. Rev. D., 35, 3658, Jun. 1987.

    [51] T. D. Lee and Y. Peng. Non-topological solitons. Physics Reports, 221:251–350, Nov. 1992.

    [52] James M. Bardeen, Kip S. Throne, and David W. Meltzer. A catalogue of methods for studying the normal modes of radial pulsation of general-relativistic stellar models. Astrophys. Journal, 145:505, 1966.

    [53] Tim Dietrich, Michael W. Coughlin, Peter T. H. Pang, Mattia Bulla, Jack Heinzel, Lina Issa, Ingo Tews, and Sarah Antier. Multi-messenger constraints on the neutron- star equation of state and the hubble constant. Science, 370, Issue 6523:1450–1453, 2020.

    [54] The LIGO Scientific Collaboration and the Virgo Collaboration. Gwtc-2.1: Deep extended catalog of compact binary coalescences observed by ligo and virgo during the first half of the third observing run. arXiv, 2108.01045, 2022.

    [55] R. Abbott et. Al. (LIGO Scientific Collaboration and Virgo Collaboration). Gwtc-2: Compact binary coalescences observed by ligo and virgo during the first half of the third observing run. Phys. Rev. X., 11, 021053, 2021.

    [56] Tim Dietrich, Tanja Hinderer, and Anuradha Samajdar. Interpreting binary neutron star merger: Describing the binary neutron star dynamics, modelling gravitational waveforms, and analyzing detections. General Relativity and Gravitation, 53:27, 2021.

    下載圖示
    QR CODE