Author: |
蕭聖益 Hsiao, Sheng-Yi |
---|---|
Thesis Title: |
透過即時反饋情境協助國中生建立模型-以靜電感應為例 Assist middle school students modeling through IRS-taking electrostatic induction as an example |
Advisor: |
張俊彥
Chang, Chun-Yen |
Committee: |
孫之元
Sun, Jerry Chih-Yuan 吳穎沺 Wu, Ying-Tien |
Approval Date: | 2021/07/01 |
Degree: |
碩士 Master |
Department: |
科學教育研究所 Graduate Institute of Science Education |
Thesis Publication Year: | 2021 |
Academic Year: | 109 |
Language: | 中文 |
Number of pages: | 128 |
Keywords (in Chinese): | 模型 、電學 、即時反饋 、科技接受模式 |
Keywords (in English): | model, electrical science, Interactive Response, technology acceptance model |
Research Methods: | 實驗設計法 、 準實驗設計法 、 半結構式訪談法 |
DOI URL: | http://doi.org/10.6345/NTNU202100641 |
Thesis Type: | Academic thesis/ dissertation |
Reference times: | Clicks: 231 Downloads: 13 |
Share: |
School Collection Retrieve National Library Collection Retrieve Error Report |
建立模型於108課綱之探究能力中占重要位置,對於學生了解複雜抽象的科學現象有所幫助。Gilbert (2004) 建議教師在自然科學教學時能具備建模教學策略/能力。但在傳統課室中教師很難了解每個學生的學習情況。以即時反饋系統(Instant Response System,簡稱IRS)為基礎所設計的雲端教室CCR (CloudClassRoom, CCR.tw) 可以即時蒐集資訊供教師參考並立即調整課程或公布班級答題狀況。廣被用來檢驗新科技的科技接受模式(Technology Acceptance Model,簡稱TAM)可以用來檢驗CCR在國中教學的可行性。靜電感應是非直觀、需要學生想像的科學內容,在中學生學習內容中是屬於困難且抽象的,且容易有學習程度落差的情形產生。本研究試圖探討以CCR為工具協助不同學習程度學生建立靜電感應模型的歷程和學習成效,並設計問卷了解中學生對於CCR的科技接受模式。結果顯示不論高、低分組,建模的四階段(發展、精緻化、遷移、重建)有隨歷程下降的趨勢,且低分組在模型發展階段就和高分組出現顯著差異,學習成效測驗發現高分組有達顯著進步,但低分組並無,其可能和建模的初期能力有關。對於高分組使用問答式和選擇題式教學發現問答式的教學可以幫助學生模型遷移,不過在模型重建並未有明顯效果。學生對CCR的科技接受模式符合Davis的科技接受模式,科技接受度相當高,對低分組可以增進學習專注力,不過學生也提出使用CCR造成課室中分心、進度的問題。總體而言,IRS可以在不同面向幫助不同程度學生建立電學模型,且CCR是一個可行的工具。
Model and modeling occupy an important position in Science Curriculum Guidelines of 12 Year Basic Education (Ministry of Education, 2018). Gilbert (2004) suggests that teachers have modeling teaching strategies/ability. But in traditional class, it’s hard for the teachers to realize all the students’ learning situation. CCR (CloudClassRoom, CCR.tw), which is designed on the basis of IRS (Interactive Response System), can collect information immediately. Teachers can immediately adjust the course or announce the class answer. Technology Acceptance Model (TAM) can be used to test the feasibility of CCR teaching in middle schools. Electrostatic induction is not intuitive, which is hard for students. This study explored the process of establishing electrostatic induction models and learning effectiveness of students with different learning levels using CCR as a tool, and design a questionnaire to understand the TAM of middle school students for CCR. The results showed that regardless of the high or low level groups, the four stages of modeling (development, elaboration, application, and reconstruction) have a downward trend with the process. The high group made significant learning effectiveness progress, but the low group did not. It may be related to the initial ability of modeling. Question-and-answer teaching can help students model application. The students’ technology acceptance of CCR is in line with Davis’s TAM. The acceptance of technology is quite high. CCR can improve low level groups’ learning attention. However, students also raised the problem of using CCR to cause distraction and progress in the classroom. In general, IRS can help students of different levels to build electrical models, and CCR is a viable tool.
中文部分:
李筠茱(2019)。台灣教師使用歐盟Go-Lab系統進行線上探究式教學之推廣研究。臺灣師範大學科學教育研究所,未出版之學位論文。
邱美虹(2007)。以認知師徒制探討建模能力與歷程對學生學習物質科學中「氧化與還原」之影響。行政院國家科學委員會研究計畫成果報告(NSC 95-2511-S-003-024-MY2)。臺北市:國立臺灣師範大學科學教育研究所。
邱美虹(2016年1月)。科學模型與建模:科學模型、科學建模與建模能力。臺灣化學教育,11。查詢日期:2021年1月9日,檢自http://chemed.chemistry.org.tw/?p=13898。
周郁凱(2017)。遊戲化實戰全書。香港:商業周刊。
林凱胤(2014)。即時回饋機制對學生學習專注力影響之研究。科學教育學刊,22(1),87-107。
林靜雯(2000)。由概念改變及心智模式 初探多重類比對國小四年級學生電學概念學習之影響。國立臺灣師範大學科學教育研究所碩士論文。
陳玉婷、蔡立元(2009)。從科技接受模式觀點探討資訊科技融入學習。臺南科大學報(人文管理),28,217-235。
徐尚鴻(2020)。遊戲化電子群眾互動系統 (GEARS) 對高中體育班學生於生物演化的學習影響。臺灣師範大學科學教育研究所,未出版之學位論文。
郭重吉、洪連輝、胡景瀚、吳天方、吳忠信、李啟龍等(2020)。自然與生活科技3上教師手冊。台南市:南一書局。
陳彥妤(2018)。應用線上互動式回饋系統提高學習動機與學習成就之研究-以國中生物科預習為例。文藻外語大學國際事業暨文化交流研究所,未出版之碩士論文。
教育部(2018)。十二年國民基本教育課程綱要 自然科學領域。臺北市,教育部。
張志康(2009)。從概念改變理論探究建模教學對學生力學心智模式與建模能力之影響。國立台灣師範大學科學教育研究所,未出版之碩士論文。
張志康、邱美虹(2009)。建模能力分析指標的發展與應用- 以電化學為例。科學教育學刊,17(4),319-342。
隋奇融(2021)。以Go-Lab平台發展與實施科學探究實作評量。國立臺灣師範大學科學教育研究所,未出版之學位論文。
許傳勇(2017)。以延伸科技接受模式探討消費者使用行動支付意圖。東吳大學企業管理學系,未出版之碩士論文。
黃炎峰(2000)。高中生對於直流電路概念及其類比模型理解之研究。國立臺灣師範大學科學教育研究所,未出版之碩士論文。
黃建翔(2017)。淺談 IRS 即時反饋系統運用至大學課程教學之策略。臺灣教育評論月刊,6(10),81-87。
黃議正(2010)。以認知負荷科技接受模式與計畫行為理論取向建構線上學習行為傾向模式之研究。臺灣師範大學工業教育學系,未出版之博士論文。
詹明儒(2018)。同儕教學法結合雲端互動教室(CCR)進行牛頓運動概念學習的成效研究。國立臺灣師範大學科學教育研究所,未出版之碩士論文。
楊明獻(2010)。改進國中理化課程教學--以 [電壓與電流] 單元為例。科學教育月刊,328,29-44。
劉俊庚(2002)。迷思概念與概念改變教學策略之文獻分析-以概念構圖和後設分析模式探討其意涵與影響。國立台灣師範大學科學教育研究所,未出版之碩士論文。
劉俊庚、邱美虹(2010)。從建模觀點分析高中化學教科書中原子理論之建模歷程及其意涵。科學教育研究與發展季刊,59,23-54。
鐘建坪(2010)。引導式建模探究教學架構初探。科學教育月刊,328,2-18。
龔心怡(2016)。運用紙本IRS即時反饋系統翻轉高等教育統計課程 -Plickers教學之反思。高等教育研究紀要,5,35-48。
英文部分:
Biggs, J. B. & Collis, K. F. (1982). Evaluatingthe quality of learning: The SOLO taxonomy. New York: Academic Press.
Buckley, B. C., & Boulter, C. J. (2000). Investigating the role of representations and expressed models in building mental models. In Developing models in science education (pp. 119-135). Netherlands: Kluwer Academic Publishers.
Chien, Y. T., Lee, Y. H., Li, T. Y., & Chang, C. Y. (2015). Examining the effects of displaying clicker voting results on high school students’ voting behaviors, discussion processes, and learning outcomes. Eurasia Journal of Mathematics, Science and Technology Education,11(5), 1089-1104.
Chiu, M.-H., & Lin, J.-W. (2019). Modeling competence in science education. Disciplinary and Interdisciplinary Science Education Research. 1.. Retrieved January 16, 2021, from https://diser.springeropen.com/articles/10.1186/s43031-019-0012-y .
David F. T., Gail C., & Thapelo L. M. (2002). Students' understanding of the role of scientific models in learning science. International Journal of Science Education, 24(4), 357-368.
Davis, F. D. (1985). A technology acceptance model for empirically testing new end-user information systems: Theory and results. Unpublished doctorial master thesis, Massachusetts Institute of Technology, America.
Davis, F. D., Bagozzi, R. P., & Warshaw, P. R. (1989). User acceptance of computer technology: a comparison of two theoretical models. Management science,35(8), 982-1003.
Dori, Y. J., & Belcher, J. (2007). Learning electromagnetism with visualizations and active learning. In Visualization in science education (pp. 187-216). Holland Dordrecht: Springer.
Gagne, E.D., Yekovich, C.W., & Yekovich, F.R. (1993). The cognitive psychology of school learning (2nd Edition). New York: Harper Collins.
Gauci, S. A., Dantas, A. M., Williams, D. A., & Kemm, R. E. (2009). Promoting student-centered active learning in lectures with a personal response system. Advances in physiology education, 33(1), 60-71.
Gilbert, J. K. (2004). Models and modeling: routes to more authentic science education. International Journal of Science, & Math Education, 2, 115-130.
Hempel, C. G. (1958). Fundamentals of concept formation in empirical science. In C. G. Hempel(Ed.), International encyclopedia of unified science: Foundations of the unity of science, volume 2 (pp. 88-93). Chicago: University of Chicago Press.
Hestenes, D. (1987). Toward a modeling theory of physics instruction. American Journal of Physics, 55(5), 440-454.
Horowitz, H. M. (2001). IBM Study Proves Use of Student Response Systems Increases Attentiveness. Retrieved January 16, 2021, from http://www.edutekmidwest.com/wp-content/uploads/2011/11/ibmstudy.pdf .
Lesh, R., & Doerr, H. M. (2000). Symbolizing, communicating, and mathematizing: Key components of models and modeling. Symbolizing and communicating in mathematics classrooms: Perspectives on discourse, tools, and instructional design, 361-383.
Liu, T.C. , Liang, J.K. , Wang, H.Y. , & Chan, T.W. ( 2003). The features and potential of interactive response system . In K. T. Lee & K. Mitchell (Eds.), International Conference on Computers in Education 2003: The "Second Wave" of ICE in Education (pp. 315-322). Hong Kong, PR China: ICCE.
Mazur, E. (1999). Peer instruction: A user’s manual. Retrieved 01/16, 2021, from https://mazur.harvard.edu/publications/peer-instruction-users-manual .
Rose, G., Khoo, H., & Straub, D. W. (1999). Current technological impediments to business-to-consumer electronic commerce. Communications of the AIS, 1(16), 1-73.
Shipstone, D.M. (1985). Electricity in simple circuits. Children's ideas in Science, 33-51.
Stephan Hartmann (1995). Models as a Tool for Theory Construction: Some Strategies of Preliminary Physics. Retrieved July 5, 2021, from http://philsci-archive.pitt.edu/2410/1/Models.pdf .
Sun, J. C.-Y. (2014). Influence of polling technologies on student engagement: An analysis of student motivation, academic performance, and brainwave data. Computers & Education, 72, 80-89. doi:10.1016/j.compedu.2013.10.010
Sun, J. C.-Y., Chen, A. Y.-Z., Yeh, K. P.-C., Cheng, Y.-T., & Lin, Y.-Y. (2018). Is group polling better? An investigation of the effect of individual and group polling strategies on students' academic performance, anxiety, and attention. Educational Technology & Society, 21(1), 12-24.
Sun, J. C.-Y., & Hsieh, P.-H. (2018). Application of a gamified interactive response system to enhance the intrinsic and extrinsic motivation, student engagement, and attention of English learners. Educational Technology & Society, 21(3), 104-116.
Tiberghien, A. (1994). Modeling as a basis for analyzing teaching – learning situations. Learning and Instruction, 4, 71-87.
Venkatesh, V., & Davis, F. D. (1996). A model of the antecedents of perceived ease of use: Development and test. Decision sciences, 27(3), 451-481.
Wang, A. I., Elvemo, A. A., & Gamnes, V. (2014). Three social classroom applications to improve student attitudes. Education Research International, 2014.