研究生: |
廖振廷 Liao, Chen-Ting |
---|---|
論文名稱: |
產氫反應機制與活性在鈷鐵磷化物上的計算與實驗研究 Computationally and experimentally investigate the HER mechanism and activity on CoP, FeP and CoFeP |
指導教授: |
王禎翰
Wang, Jeng-Han |
口試委員: |
王禎翰
Wang, Jeng-Han 洪偉修 Whung, Wei-Hsiu 王冠文 Wang, Kuan-Wen |
口試日期: | 2022/06/28 |
學位類別: |
碩士 Master |
系所名稱: |
化學系 Department of Chemistry |
論文出版年: | 2022 |
畢業學年度: | 110 |
語文別: | 中文 |
論文頁數: | 140 |
中文關鍵詞: | 密度泛函理論 、析氫反應 、金屬磷化物 |
英文關鍵詞: | Density functional theory (DFT), Hydrogen evolution reaction, Metal phosphide |
研究方法: | 實驗設計法 |
DOI URL: | http://doi.org/10.6345/NTNU202200728 |
論文種類: | 學術論文 |
相關次數: | 點閱:210 下載:18 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
氫氣燃料作為取代化石燃料成為下一代符合永續發展的能源,以電解水方式進行析氫反應可以說是一種有效且可行的產氫方式,本篇研究以非貴金屬材料CoP、FeP和CoFeP作為反應觸媒,分析其反應機制並利用雙金屬的摻雜增進析氫活性。
本篇研究第一部分以常見的方法以氫吸附能分析析氫活性,利用氫原子在真空下吸附於觸媒表面計算吸附能,我們以Ag、Au、Co、Cu、Ni 、Pd、Pt、Rh確認吸附能與析氫反應電流的火山圖趨勢,接者以相同方式探討CoP、FeP和CoFeP,發現CoFeP由於Co-Fe雙金屬摻雜影響電子結構,確實有著更好的吸附能(ΔGH*≈0)。除此之外’,我們對於火山圖趨勢中Cu的偏移,我們利用含水層的模型計算其反應的活化能以及電位改變對電子轉移過程的影響,成功解釋了Cu不在火山圖趨勢的原因。利用這個方法,我們發現CoFeP在速率決定步驟Volmer step的活化能低於CoP、FeP,因此我們認為在計算上CoFeP會有更好的析氫活性。
最後,我們利用實驗確認CoP、FeP和CoFeP的電化學活性,以共沉澱法和化學氣相沉積合成,再以SEM、EDX、XRD、XPS確認觸媒之晶粒大小皆為6~8 nm,且都為均勻的純相磷化物,透過電化學方法,我們測得CoFeP有更好的電化學活性,在10毫安電流的過電位為50 mV以及117 mV/dec的塔菲爾斜率,在排除活性面積的增加改變電流,我們確認了雙金屬在觸媒間的互相影響不只增強了化學穩定度,也確實增加了反應活性。
Hydrogen fuel as a fascinating alternative to traditional fossil energy resources; hydrogen evolution reaction (HER) through water electrolysis is one of the most effective and feasible way for hydrogen production. In this study, we investigated the low-cost phosphides of CoP, FeP and CoFeP to better understand the HER mechanism and improve their activity.
Initially, we examined the HER mechanism via the common evaluation of free energy for hydrogen adsorption (ΔGH*) on the catalysts in vacuum. We studied the various metals of Co, Ni, Cu, Rh, Pd, Ag, Pt and Au, as references, as well as our phosphide samples. Our results found that CoFeP has the appropriate ΔGH* for the better HER activity than other phosphides, attributable to the altered electronic structure due to Co-Fe interaction. The results for metallic samples well reproduce the volcano plot of their HER activity, with the deviation of Cu, from previous works. Furthermore, we utilized more realistic water-layer model to examine the reaction barrier and effect from electric potential in the proton transfer process in HER. Our result found that the rate-determining Volmer step has the lowest energy on CoFeP among phosphides, implying its best HER activity; also, the Cu deviation has been well resolved. Finally, we experimentally confirmed the superior activity of CoFeP. CoP, FeP and CoFeP have been synthesized by co-precipitation and chemical vapor deposition methods and characterized by SEM, EDX, XRD, XPS and TEM, in which similar sized (6 ~ 8 nm) and uniformly distributed phosphides without oxide contaminants have been well prepared.
Electrochemical experiment indeed shows that CoFeP has the best HER reactivity with the overpotential of 50 mV and Tafel slope of 117 mV/dec.
1. Zhu, J., et al., Recent Advances in Electrocatalytic Hydrogen Evolution Using Nanoparticles. Chemical Reviews, 2020. 120(2): p. 851-918.
2. Zou, X. and Y. Zhang, Noble metal-free hydrogen evolution catalysts for water splitting. Chemical Society Reviews, 2015. 44(15): p. 5148-5180.
3. Wu, Z., et al., NiFe2O4 Nanoparticles/NiFe Layered Double-Hydroxide Nanosheet Heterostructure Array for Efficient Overall Water Splitting at Large Current Densities. ACS Applied Materials & Interfaces, 2018. 10(31): p. 26283-26292.
4. Wang, J., et al., CoOx–carbon nanotubes hybrids integrated on carbon cloth as a new generation of 3D porous hydrogen evolution promoters. Journal of Materials Chemistry A, 2017. 5(21): p. 10510-10516.
5. Suliman, M.H., et al., Confined growth and dispersion of FeP nanoparticles in highly mesoporous carbons as efficient electrocatalysts for the hydrogen evolution reaction. International Journal of Hydrogen Energy, 2021. 46(12): p. 8507-8518.
6. Shi, J., et al., Novel electrocatalyst of nanoporous FeP cubes prepared by fast electrodeposition coupling with acid-etching for efficient hydrogen evolution. Electrochimica Acta, 2020. 329: p. 135185.
7. Wang, B., et al., A co-coordination strategy to realize janus-type bimetallic phosphide as highly efficient and durable bifunctional catalyst for water splitting. Journal of Materials Science & Technology, 2021. 74: p. 11-20.
8. Zhu, Y., et al., Bifunctional and Efficient CoS2–C@MoS2 Core–Shell Nanofiber Electrocatalyst for Water Splitting. ACS Sustainable Chemistry & Engineering, 2019. 7(3): p. 2899-2905.
9. Li, X.X., et al., In situ formation of consubstantial NiCo2S4 nanorod arrays toward self-standing electrode for high activity supercapacitors and overall water splitting. Journal of Power Sources, 2018. 402: p. 116-123.
10. Cao, B., et al., Mixed Close-Packed Cobalt Molybdenum Nitrides as Non-noble Metal Electrocatalysts for the Hydrogen Evolution Reaction. Journal of the American Chemical Society, 2013. 135(51): p. 19186-19192.
11. Long, G.-f., et al., Active sites and mechanism on nitrogen-doped carbon catalyst for hydrogen evolution reaction. Journal of Catalysis, 2017. 348: p. 151-159.
12. Wang, M., et al., Mesoporous Mn-Doped FeP: Facile Synthesis and Enhanced Electrocatalytic Activity for Hydrogen Evolution in a Wide pH Range. ACS Sustainable Chemistry & Engineering, 2019. 7(14): p. 12419-12427.
13. Tian, L., X. Yan, and X. Chen, Electrochemical Activity of Iron Phosphide Nanoparticles in Hydrogen Evolution Reaction. ACS Catalysis, 2016. 6(8): p. 5441-5448.
14. Liu, R., et al., Controlled synthesis of FeP nanorod arrays as highly efficient hydrogen evolution cathode. Journal of Materials Chemistry A, 2014. 2(41): p. 17263-17267.
15. Mohiuddin, M., et al., Synthesis of two-dimensional hematite and iron phosphide for hydrogen evolution. Journal of Materials Chemistry A, 2020. 8(5): p. 2789-2797.
16. SABATIER, P., La catalyse en chimie organique. 1920: Paris, Liège, Librairie polytechnique.
17. Trasatti, S., Work function, electronegativity, and electrochemical behaviour of metals: III. Electrolytic hydrogen evolution in acid solutions. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1972. 39(1): p. 163-184.
18. Nørskov, J.K., et al., Trends in the Exchange Current for Hydrogen Evolution. Journal of The Electrochemical Society, 2005. 152(3): p. J23.
19. Durst, J., et al., (Invited) Hydrogen Oxidation and Evolution Reaction (HOR/HER) on Pt Electrodes in Acid vs. Alkaline Electrolytes: Mechanism, Activity and Particle Size Effects. ECS Transactions, 2014. 64(3): p. 1069-1080.
20. Santos, E., P. Quaino, and W. Schmickler, Theory of electrocatalysis: hydrogen evolution and more. Physical Chemistry Chemical Physics, 2012. 14(32): p. 11224-11233.
21. Laursen, A.B., et al., Electrochemical Hydrogen Evolution: Sabatier’s Principle and the Volcano Plot. Journal of Chemical Education, 2012. 89(12): p. 1595-1599.
22. Gao, Y., et al., New insight on hydrogen evolution reaction activity of the most exposure (0 1 1) surface and its monovacancy defect for FeP system: A theoretical perspective. Chemical Physics Letters, 2019. 734: p. 136740.
23. Wang, T.-W., et al., First-principles investigation of the hydrogen evolution reaction of transition metal phosphides CrP, MnP, FeP, CoP, and NiP. Physical Chemistry Chemical Physics, 2021. 23(3): p. 2305-2312.
24. Liu, Q., et al., 2D tetragonal transition-metal phosphides: an ideal platform to screen metal shrouded crystals for multifunctional applications. Nanoscale, 2020. 12(12): p. 6776-6784.
25. Quaino, P., et al., Volcano plots in hydrogen electrocatalysis - uses and abuses. Beilstein journal of nanotechnology, 2014. 5: p. 846-854.
26. Skúlason, E., et al., Modeling the Electrochemical Hydrogen Oxidation and Evolution Reactions on the Basis of Density Functional Theory Calculations. The Journal of Physical Chemistry C, 2010. 114(42): p. 18182-18197.
27. Shinagawa, T., A.T. Garcia-Esparza, and K. Takanabe, Insight on Tafel slopes from a microkinetic analysis of aqueous electrocatalysis for energy conversion. Scientific Reports, 2015. 5(1): p. 13801.
28. Seh, Z.W., et al., Combining theory and experiment in electrocatalysis: Insights into materials design. Science, 2017. 355(6321): p. eaad4998.
29. Kastlunger, G., P. Lindgren, and A.A. Peterson, Controlled-Potential Simulation of Elementary Electrochemical Reactions: Proton Discharge on Metal Surfaces. The Journal of Physical Chemistry C, 2018. 122(24): p. 12771-12781.
30. Kronberg, R. and K. Laasonen, Reconciling the Experimental and Computational Hydrogen Evolution Activities of Pt(111) through DFT-Based Constrained MD Simulations. ACS Catalysis, 2021. 11(13): p. 8062-8078.
31. Kronberg, R. and K. Laasonen, Coupling Surface Coverage and Electrostatic Effects on the Interfacial Adlayer–Water Structure of Hydrogenated Single-Crystal Platinum Electrodes. The Journal of Physical Chemistry C, 2020. 124(25): p. 13706-13714.
32. Filhol, J.-S. and M. Neurock, Elucidation of the Electrochemical Activation of Water over Pd by First Principles. Angewandte Chemie International Edition, 2006. 45(3): p. 402-406.
33. Otani, M. and O. Sugino, First-principles calculations of charged surfaces and interfaces: A plane-wave nonrepeated slab approach. Physical Review B, 2006. 73(11): p. 115407.
34. Rossmeisl, J., et al., Modeling the electrified solid–liquid interface. Chemical Physics Letters, 2008. 466(1): p. 68-71.
35. Hu, G., Q. Tang, and D.-e. Jiang, CoP for hydrogen evolution: implications from hydrogen adsorption. Physical Chemistry Chemical Physics, 2016. 18(34): p. 23864-23871.
36. Zhao, X., et al., Elucidating the sources of activity and stability of FeP electrocatalyst for hydrogen evolution reactions in acidic and alkaline media. Applied Catalysis B: Environmental, 2020. 260: p. 118156.
37. Liu, F., C. Liu, and X. Zhong, Enhancing electrocatalysis for hydrogen production over CoP catalyst by strain: a density functional theory study. Physical Chemistry Chemical Physics, 2019. 21(18): p. 9137-9140.
38. Xu, H., et al., Fe–Co–P multi-heterostructure arrays for efficient electrocatalytic water splitting. Journal of Materials Chemistry A, 2021. 9(43): p. 24677-24685.
39. Luo, B., et al., Glucose-derived carbon sphere supported CoP as efficient and stable electrocatalysts for hydrogen evolution reaction. Journal of Energy Chemistry, 2017. 26(6): p. 1147-1152.
40. Jiang, P., et al., CoP nanostructures with different morphologies: synthesis, characterization and a study of their electrocatalytic performance toward the hydrogen evolution reaction. Journal of Materials Chemistry A, 2014. 2(35): p. 14634-14640.
41. Pan, Y., et al., Cobalt phosphide-based electrocatalysts: synthesis and phase catalytic activity comparison for hydrogen evolution. Journal of Materials Chemistry A, 2016. 4(13): p. 4745-4754.
42. Li, H., et al., Hollow bimetallic M-Fe-P (M=Mn, Co, Cu) nanoparticles as efficient electrocatalysts for hydrogen evolution reaction. International Journal of Hydrogen Energy, 2019. 44(41): p. 22806-22815.
43. Lin, C., et al., Porous superstructures constructed from ultrafine FeP nanoparticles for highly active and exceptionally stable hydrogen evolution reaction. Journal of Materials Chemistry A, 2018. 6(15): p. 6387-6392.
44. Chung, D.Y., et al., Large-Scale Synthesis of Carbon-Shell-Coated FeP Nanoparticles for Robust Hydrogen Evolution Reaction Electrocatalyst. Journal of the American Chemical Society, 2017. 139(19): p. 6669-6674.
45. Thomas, L.H., The calculation of atomic fields. Proceedings of the Cambridge Philosophical Society, 1927. 23: p. 542.
46. Dirac, P.A.M., Note on Exchange Phenomena in the Thomas Atom. Proceedings of the Cambridge Philosophical Society, 1930. 26: p. 376.
47. Latter, R., Atomic Energy Levels for the Thomas-Fermi and Thomas-Fermi-Dirac Potential. Physical Review, 1955. 99(2): p. 510-519.
48. Hohenberg, P. and W. Kohn, Inhomogeneous Electron Gas. Physical Review, 1964. 136(3B): p. B864-B871.
49. Kohn, W. and L.J. Sham, Self-Consistent Equations Including Exchange and Correlation Effects. Physical Review, 1965. 140(4A): p. A1133-A1138.
50. Perdew, J.P. and Y. Wang, Accurate and simple analytic representation of the electron-gas correlation energy. Physical Review B, 1992. 45(23): p. 13244-13249.
51. Perdew, J.P., M. Ernzerhof, and K. Burke, Rationale for mixing exact exchange with density functional approximations. Journal of Chemical Physics, 1996. 105: p. 9982-9985.
52. Slater, J.C., Atomic Shielding Constants. Physical Review, 1930. 36(1): p. 57-64.
53. Boys, S.F., Electronic Wave Functions. I. A General Method of Calculation for the Stationary States of Any Molecular System. Proceedings of the Royal Society of London Series A, 1950. 200: p. 542-554.
54. Blöchl, P.E., Projector augmented-wave method. Physical Review B, 1994. 50(24): p. 17953-17979.
55. Payne, M.C., et al., Iterative minimization techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients. Reviews of Modern Physics, 1992. 64(4): p. 1045-1097.
56. Setyawan, W. and S. Curtarolo, High-throughput electronic band structure calculations: Challenges and tools. Computational Materials Science, 2010. 49: p. 299-312.
57. NCHC-Taiwania 1. 2022; Available from: https://iservice.nchc.org.tw/nchc_service/nchc_service_hpc.php.
58. William H. Press, S.A.T., William T. Vetterling and Brian P. Flannery, Numerical Recipes: The Art of Scientific Computing. 1986, Cambridge University Press.
59. Henkelman, G., B.P. Uberuaga, and H. Jónsson, A climbing image nudged elastic band method for finding saddle points and minimum energy paths. Journal of Chemical Physics, 2000. 113: p. 9901-9904.
60. Deakyne, C.A., et al., Experimental and theoretical study of the energetics of trialkylsulfonium ions. Journal of Molecular Structure, 1999. 485-486: p. 33-41.
61. Forray, F.L., et al., Synthesis, characterization and thermochemistry of synthetic Pb–As, Pb–Cu and Pb–Zn jarosites. Geochimica et Cosmochimica Acta, 2014. 127: p. 107-119.
62. Yu, C., et al., Template-Free Preparation of Mesoporous Fe2O3 and Its Application as Absorbents. The Journal of Physical Chemistry C, 2008. 112(35): p. 13378-13382.
63. Shu, Z., et al., Room-temperature catalytic removal of low-concentration NO over mesoporous Fe–Mn binary oxide synthesized using a template-free approach. Applied Catalysis B: Environmental, 2013. 140-141: p. 42-50.
64. Yu, C., et al., A Simple Template-Free Strategy to Synthesize Nanoporous Manganese and Nickel Oxides with Narrow Pore Size Distribution, and Their Electrochemical Properties. Advanced Functional Materials, 2008. 18(10): p. 1544-1554.
65. Diefallah, E.-H.M., et al., Thermal decomposition of iron(II) oxalate–magnesium oxalate mixtures. Journal of Analytical and Applied Pyrolysis, 2002. 62(2): p. 205-214.
66. Nikumbh, A.K., A.E. Athare, and V.B. Raut, A study of the thermal decomposition of cobalt(II) and nickel(II) oxalate dihydrate using direct current electrical conductivity measurements. Thermochimica Acta, 1991. 186(2): p. 217-233.
67. Liu, D., et al., Disproportionation of hypophosphite and phosphite. Dalton Transactions, 2017. 46(19): p. 6366-6378.