研究生: |
侯詠智 |
---|---|
論文名稱: |
紅熒烯與鈷在矽(100)上形成複合材料的結構與磁性研究 Structures and magnetic properties of composite films containing Cobalt and Rubrene |
指導教授: | 蔡志申 |
學位類別: |
碩士 Master |
系所名稱: |
物理學系 Department of Physics |
論文出版年: | 2013 |
畢業學年度: | 101 |
語文別: | 中文 |
論文頁數: | 123 |
中文關鍵詞: | 紅熒烯 、混鍍 、鈷 、磁光柯爾效應 、結構 |
論文種類: | 學術論文 |
相關次數: | 點閱:224 下載:16 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本實驗室利用磁光柯爾效應儀(MOKE)、原子力顯微鏡(AFM)與X光繞射儀(XRD),來分析使用磁控濺鍍的鈷(Cobalt)與蒸鍍的紅熒烯(Rubrene)在矽(Si(100))基板上的結構與磁特性,第一部分先探討Co/Si(100)的不同濺鍍功率的表面結構與磁特性,再來是Rubrene/Si(100)的不同溫度與不同厚度之表面結構,Co/Si(100)於所有濺鍍功率都會有三角錐結構,只是濺鍍功率低的比例較少,而Rubrenen/Si(100)於不同的溫度與時間都會有結構上的變化,但無論是改變蒸鍍溫度或時間,表面的堆積過程是雷同的,都是由顆粒狀轉變為網狀結構。第二部分將不同的鈷與紅熒烯混合比例分成三組,第一組Co0.5Rubrene0.5/Si(100)、第二組Co0.6Rubrene0.3/Si(100)、第三組Co0.75Rubrene0.25/Si(100),改變鈷的鍍率但紅熒烯的蒸鍍條件完全相同,分析結構與磁性之間相互影響之現象。這三組皆無三角錐結構,第一組樣品表面平整,且矯頑力與表面粗糙度相關,表面粗糙度越大矯頑力越大。第二組與第三組較薄的前幾個樣品開始出現顆粒狀結構,且矯頑力與顆粒大小相關,顆粒越大矯頑力越大。為後一個部分是將Co0.5Rubrene0.5/Si(100)與Co0.75Rubrene0.25/Si(100)這兩組的紅熒烯使用酒精沖洗掉,分析其表面結構與磁性的關係,發現這兩組表面有不一樣的成膜方式,但相同的是洗掉紅熒烯會將部分懸浮的鈷粒一起帶走,所以洗掉紅熒烯後的矯頑力比洗掉前小。
[1] V. Podzorov, V. M. Pudalov, and M. E. Gershenson, Phys. Lett. 82, 1739 (2003)
[2] Haruka Kusai, Shinji Miwa, Masaki Mizuguchi, Teruya Shinjo, Yoshishige Suzuki, Masashi Shiraishi, Chemical Phys. Lett. 448 (2007)
[3] Kobashi Koji, "2.1 Structure of diamond", Diamond films: chemical vapor deposition for oriented and heteroepitaxial growth, Elsevier, 9 (2005)
[4] 李乃平,微電子器件工藝,華中理工大學出版社,武漢市 (1995)
[5] M. T. Kief and W. F. Egelhoff, Jr. Phys. Rev. B 47, 10785 (1993)
[6] Lee, B.; Alsenz, R.; Ignatiev, A.; Van Hove, M. (1978). Phys. Rev. Lett. B 17 (4): 1510
[7] Oana Diana, Jurchescu "Molecular organic semiconductors for electronic devices" chapter Low Temperature Crystal Structure of Rubrene Single Crystals Grown by Vapor Transport, Groningen (2006)
[8] V. alek dediu, luis e. hueso, ilaria bergenti and Carlo taliani Nature Materials 8, Italy (2009)
[9] Vitaly Podzorov, Matthew F. Calhoun, and Michael E. Gershenson, Phys. Rev. Lett. 96, 056604 (2006)
[10] Y. Luo, M. Brun, P. Rannou, and B. Grevin , phys. stat. sol. (a) 204, No. 6, 1851 (2007)
[11] 林彥君,國立成功大學碩士論文(2007)
[12] M. Nothaft and J. Pflaum*, phys. stat. sol. (b) 245, No. 5, 788–792 (2008)
[13] J.A. Thorntion, J. Vac. Sci. Technol. A,4,0734 (1986)
[14] J. A. C. Bland and B. Heinrich, Ultrathin Magnetic Structure I ,Springer, New York (1994)
[15] C. Kittel, Introduction of Solid State Physics. 7th ed, Jhon Wiley & Sons inc., New York (1996)
[16] D. J. Griffiths, Introduction of Electrodynamics, Addison Wesley, New York (1981)
[17] A. Hubert, R. Schafer, Magnetic Domain, Springer Berlin Heidelberg, New York (1998)
[18] J. Nogues and I. K. Schuller ,J. Magn. Magn. Mater. 192, 203 (1999)
[19] 蔡志申,物理雙月刊(廿五卷五期)605 (2003)
[20] Y.E. Wu, J.S. Tsay, S.C. Chen, T.Y. Fu and C.S. Shern, Jpn. J. Appl. Phys. 40,825 (2001)
[21] J. D. Jackson, Classical Electrondynamics 3rd ed.,Chap. 8,p.352 ,John Wiely & Sons, New York (1999)
[22] R.F. Willis, Prog. Surf. Sci. 54, 277 (1997)
[23] 李世鴻,“積體電路製程技術”, 五南書局出版公司 (1998)
[24] 陳建人,真空技術與應用,行政院國家科學委員會精密儀器發展中心 (1994)
[25] 曾筱嵐,國立台灣師範大學碩士論文 (2002)
[26] 產品目錄,MeiVac, Inc.,Taiwan (2007)
[27] 產品目錄,advanced energy industries, Inc.,Taiwan (2007)
[28] Giessibl, Franz J. "Advances in atomic force microscopy". Reviews of Modern Physics 75: 949 (2003)
[29] G.Binning, C. F. Quate, and Ch. Gerber, “Atomic Force Microscopy”, Physical Review Letters, 56 (1986)
[30] Skoog, D.A.; Holler, F.J.; Crouch, S.R. Principles of Instrumental Analysis. Sixth Edition, Thomson Brooks/Cole, USA (2007)
[31] Glatter, O.; O. Kratky. Small Angle X-ray Scattering. Academic Press. 1982
[32] David Jiles, "Introduction to Magnetism and Magnetic Materials", Chapman & Hall, London (1991)
[33] Z.Q. Qiu, S.D. Bader , Rev. Sci. Instrum, 71,1243 (2000)
[34] Z.Q. Qiu, J.Pearson and S.D Bader Phys. Rev. B ,45, 7211 (1992)
[35] A. Hubert, R. Schafer, Magnetic Domain, New York (1998)
[36] 產品目錄,Unice E-O Services Inc.,Taiwan (2003)
[37] D. R. Lide, Handbook of Chemistry and Phys.,72nded., Chemical Rubber Publishing Company, England (1991)
[38] C. P. Liu, J. J. Chang, S. W. Chen, H. C. Chung, Y. L. Wang, Appl. Phys. A 80 (2005)
[39] Z.A. Matysina: Mater. Chem. Phys. 60, 70 (1999)
[40] 許智瑜,國立臺灣師範大學碩士論文 (2012)
[41] Weinberger, P. "John Kerr and his Effects Found in 1877 and 1878". Philosophical Magazine Letters 88 (12): 897 (2008)
[42] D. Käfer , G. Witte, Chem. Phys. 7, 2850 (2005)
[43] Natalie Stingelin-Stutzmann, Edsger Smits, Harry Wondergem, Cristina Tanase, Paul Blom, Paul Smith, Dago de Leeuw, Nature Materials , 4, 601 (2005)