簡易檢索 / 詳目顯示

研究生: 康証皓
Kang, Zheng-Hao
論文名稱: 臺灣梅雨季降雨之物理-經驗預報模式分析
Analysis of Physically based Empirical Forecast Model of Meiyu Season Rainfall in Taiwan
指導教授: 黃婉如
Huang, Wan-Ru
口試委員: 王嘉琪
Wang, Chia-Chi
陳正達
Chen, Cheng-Ta
黃婉如
Huang, Wan-Ru
口試日期: 2022/01/06
學位類別: 碩士
Master
系所名稱: 地球科學系
Department of Earth Sciences
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 63
中文關鍵詞: 梅雨季降雨預報方程式預報因子
英文關鍵詞: Meiyu rainfall, Forecast equation, Prediction factors
研究方法: 主題分析觀察研究內容分析法
DOI URL: http://doi.org/10.6345/NTNU202200221
論文種類: 學術論文
相關次數: 點閱:119下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 過去研究指出,能夠藉由多種影響臺灣梅雨季(5-6月)降雨的機制,選取預報因子,並建立出具有物理意義的預報方程式。Yim et al. (2015)以海表與兩米溫度變化趨勢作為預報因子,並且建立了三個預報領先時間(0-month lead、1-month lead和2-month lead)之預報方程式,其中以0-month lead所建立的預報方程式對於臺灣梅雨季降雨之年際預報結果最佳。之後,張等(2017)針對Yim et al. (2015)提出的物理-經驗預報方程式對臺灣梅雨季降雨預報能力進行改善。然而這些研究僅針對2015年前的資料進行分析,其對於2016-2020年臺灣梅雨季的降雨預報能力尚不可知。在本研究中,我們以中央氣象局(簡稱CWB) 測站資料作為臺灣梅雨季降雨資料,針對以下三個議題進行探討:(1) Yim et al. (2015)與張等(2017)所建立的物理-經驗預報方程式對於2016-2020年臺灣梅雨季降雨預報是否適用? (2)以2008-2015年為訓練期,重新建立的預報方程式是否能改善對於2016-2020年臺灣梅雨季降雨預報結果? (3)以風場相關的氣象參數做為預報因子,重新建立的預報方程式,是否能有效的掌握2016-2020年臺灣梅雨季降雨? 針對上述議題,本研究發現前人所建立的預報方程式,對於2016-2020年臺灣梅雨季降雨的預報結果不盡理想。而我們以2008-2015年為訓練期或是調整預報因子選取範圍重新建立的預報方程式對於2016-2020年臺灣梅雨季降雨預報也無明顯改善。對於此結果,我們藉由改變預報因子參數,由原本的溫度趨勢改為與風場相關之參數趨勢,結果發現重新建立的預報方程式中以850hPa速度位趨勢作為預報因子最能夠有效的提升預報能力。此研究成果對「預報因子從溫度改為風場相關參數」的可能性提供了新的見解,有利於提高臺灣梅雨季降雨的物理-經驗預報模式的能力。

    Past studies have pointed out that various rainfall mechanisms of Meiyu season (May to June) can be used as prediction factors to help establish prediction equation with physical meaning. Yim et al. (2015) used trends change of sea surface temperature and 2 meters temperature as prediction factors to establish three forcast equations at different lead time (0-month lead, 1-month lead and 2-month lead), and found that the forecast equation established by the 0-month lead is the best for rainfall forecast in Taiwan during the Meiyu season on the interannual timescale. Afterward, Chang et al. (2017) modified Yim et al. (2015)’s equation to improve the Meiyu season rainfall forcast. However, both these studies have focused on the data prior to 2015, and the ability of the forcast equation in prediting 2016-2020’s Meiyu rainfall in Taiwan is unknown. In this study, we used the Central Weather Bureau (CWB) station data as the rainfall data for the Meiyu season in Taiwan, and discussed the following three issues: (1) Do the physical-empirical forecast equation established by Yim et al. (2015) and Chang et al. (2017) suitable for rainfall forecast in Taiwan during the Meiyu season from 2016 to 2020? (2) If we use 2008-2015 as the training period to re-establish the forecast equations, can we improve the results of the rainfall forecasts in Taiwan for the Meiyu season from 2016 to 2020? (3) If we use wind field-related meteorological parameters as predictors to re-establish the forecast equations, can we improve the results of the rainfall forecasts in Taiwan for the Meiyu season from 2016 to 2020? Our results show that both the forecast equations established by Yim et al. (2015) and Chang et al. (2017) are not capable to predict the Meiyu season in Taiwan during 2016 to 2020. In addition, the re-established forecast equation that use 2008-2015 as training period has not obviously improve the rainfall forecast for the Meiyu season during 2016 to 2020. In contrast, the re-established forecast equation that use the 850hPa velocity potential trend as the predictor can efficiently improve the ability of rainfall forecast. This finding provides new insight for the possibility of changing the predictor from temperature to wind-related factor to improve the ability of physically based empirical forecast model of Meiyu season rainfall in Taiwan.

    第一章 前言 1 第二章 資料處理與分析方法 4 2.1 資料 4 2.2 分析方法 5 2.2.1 回歸分析 5 2.2.2 預報因子的選取、預報方程式的選擇與運用 6 2.2.3 相關係數與統計檢定 8 第三章 預報方程式之檢驗與改善 9 3.1 Yim et al. (2015)與張等(2017)建立之物理-經驗預報方程式是否適用於2016-2020年臺灣梅雨季降雨預報 9 3.2 預報因子不變但重新訓練預報方程式,對於2016-2020年臺灣梅雨季降雨掌握度是否有所提升 10 3.3 預報因子範圍改變,重新訓練預報方程式,對於2016-2020年臺灣梅雨季降雨掌握度是否有所提升 12 第四章 風場參數之梅雨季平均狀態分析 14 第五章 風場趨勢在各層建立之預報方程式分析 16 5.1 以輻散場所建立的預報方程式是否適用於2016-2020年臺灣梅雨季降雨 16 5.2 以速度位場所建立的預報方程式是否適用於2016-2020年臺灣梅雨季降雨 18 5.3 以渦度場所建立的預報方程式是否適用於2016-2020年臺灣梅雨季降雨 19 5.4 以流函數場所建立的預報方程式是否適用於2016-2020年臺灣梅雨季降雨 21 第六章 討論 23 6.1 重新定義850hPa速度位場預報因子選取範圍,分析其所建立的預報方程式對於2016-2020年臺灣梅雨季降雨預報是否能夠提升 23 6.2 延長訓練期,850hPa速度位趨勢所建立的預報方程式,對於2016-2020年臺灣梅雨季降雨預報差異 24 第七章 總結 26 第八章 未來展望 28 參考文獻 30 附表 34 附圖 43

    交通部中央氣象局(中華民國110年5月15日)。每日雨量資料。中華民國111年1月20日,取自:https://www.cwb.gov.tw/V8/C/D/DailyPrecipitation.html
    李思瑩、盧孟明,2015:臺灣冬季溫度統計預報模式之建立。天氣分析與預報研討會,臺北,A3-16。
    李思瑩、盧孟明,2018:臺灣冬季溫度季節預報的預報因子挑選及可預報度來源分析。大氣科學,46,125-148。
    卓盈旻、盧孟明,2017:運用大尺度西南氣流指數法預報臺灣梅雨季極端降雨頻率年際變化。大氣科學,45,83-100。
    周柿均、張惠玲,2019:東亞地區二週系集降雨預報評估分析。大氣科學,47,173-202。
    胡志文、黃文豪、鄭凱傑、施宇晴、李清滕,2014:中央氣象局第二代動力統計氣候預報系統簡介。天氣分析與預報研討會,臺北,A3-1。
    涂建翊、蔡梨敏、余嘉裕,2001:初夏亞洲季風環流、熱源與東太平洋海溫年際變化關係。大氣科學,29,343-360。
    張雅惠、陳冠杰、黃婉如,2017:物理-經驗模式對臺灣梅雨季降雨年際變化預報的應用與改善。大氣科學,45,333-348。
    張雅惠、黃婉如,2016:2016年臺灣梅雨季午後對流降雨分析。大氣科學,44,289-304。
    陳冠杰、黃婉如,2016:中央氣象局全球預報模式對2016年5~6月東亞區域降雨之預報能力評析。大氣科學,44,305-327。
    陳泰然、王子軒、黃心怡,2014:臺灣東部梅雨鋒面降水中尺度氣候法之預報校驗。大氣科學,42,1-28。
    陳景森、陳宇能、林秉承、林沛練、劉哲伶、蘇炯瑞、彭文君,2007:梅雨季台灣西南部豪雨之探討(1997~2006)。大氣科學,35,287-304。
    劉品誼、黃婉如、張雅惠、黃柏翰、陳建河,2018:中央氣象局全球預報模式對不同BSISO相位下臺灣梅雨季降雨特徵之預報能力評析:以2016-2017年為例。大氣科學,46,372-405。
    簡芳菁、洪玉秀,2010:梅雨季西南氣流氣候平均與個案之數值研究。大氣科學,38,237-268。
    Chen, T. C., S. Y. Wang, W. R. Huang, and M. C. Yen, 2004: Variation of the east asian summer monsoon rainfall. J. Clim., 17, 744-762.
    Chen, T. C., W. R. Huang, M. C. Yen, 2011: Interannual Variation of the Late Spring–Early Summer Monsoon Rainfall in the Northern Part of the South China Sea. J. Clim., 24, 4295-4313.
    Delworth, T. L., A. J. Broccoli, A. Rosati et al, 2006: GFDL’s CM2 global coupled climate models. Part I: formulation and simulation characteristics. J. Clim., 19, 643-674.
    Gong, D. Y., J. Yang, S. J. Kim, Y. Gao, D. Guo, T. Zhou, and M. Hu, 2011: Spring Arctic Oscillation-East Asian summer monsoon connection through circulation changes over the western North Pacific. Clim. Dyn., 37, 2199-2216.
    Hoskins, B., P. Schopf, and A. Navarra, 2008: Modeling the atmospheric, oceanic and coupled system. In: Troccoli A, Harrison M, Anderson DLT, Mason SJ (eds) Seasonal climate: forecasting and managing risk. Springer Academic Publishers, Dordrecht, 127-162.
    Hudson, D., O. Alves, H. H. Hendon, G. Wang, 2011: The impact of atmospheric initialisation on seasonal prediction of tropical Pacific SST. Clim. Dyn., 36, 1155-1171.
    Lau, N. C., and M. J. Nath, 2003: Atmosphere-ocean variations in the Indo-Pacific sector during ENSO episodes. J. Clim., 16, 3-20.
    Lu, M. M., C. T. Lee, and B. Wang, 2018: Predictability of late-season tropical cyclone accumulated kinetic energy around Taiwan 2 months ahead. Int. J. Climatol., 38, 1938-1952.
    Luo, J. J., S. Masson, S. Behera, S. Shingu, T. Yamagata, 2005: Seasonal climate predictability in a coupled OAGCM using a different approach for ensemble forecast. J. Clim., 18, 4474-4497.
    Molteni, F., L. Ferranti, T. N. Palmer, and P. Viterbo, 1993: A dynamical interpretation of the global response to equatorial Pacific SST anomalies. J. Clim., 6, 777-795.
    Saha, S., S. Nadiga, C. Thiaw et al, 2014: The NCEP climate forecast system version 2. J. Clim., 27, 2185-2208.
    Troccoli, A., M. Harrison, D. L. T. Anderson, and S. J. Mason, 2008: Seasonal Climate Variability: Forecasting and Managing Risk. Springer Academic Publishers, Dordrecht, p. 467.
    Wang, B., J. Y. Lee et al, 2009a: Advance and prospectus of seasonal prediction: assessment of the APCC/CliPAS 14-model ensemble retroperspective seasonal prediction (1980-2004). Clim. Dyn., 33, 93-117.
    Wang, B., B. Xiang, J. Li, P. J. Webster, M. N. Rajeevan, J. Liu, and K. J. Ha, 2015: Rethinking Indian monsoon rainfall prediction in the context of recent global warming. Nat. Commun. 6, 7154.
    Wang, B., B. Xiang, and J. Y. Lee, 2013: Subtropical high predictability establishes a promising way for monsoon and tropical storm predictions. Proc. Natl. Acad. Sci., 10, 2718-2722.
    Wang, B., J. Liu, J. Yang, T. Zhou, and Z. Wu, 2009: Distinct principal modes of early and late summer rainfall anomalies in East Asia. J. Clim., 22, 3864-3875.
    Wang, B., R. Wu, and X. Fu, 2000: Pacific-East Asia teleconnection: how does ENSO affect East Asian climate? J. Clim., 13, 1517-1536.
    Wang, S. Y., and T. C. Chen, 2008: Measuring East Asian summer monsoon rainfall contributions by different weather systems over Taiwan. J. Appl. Meteorol. Climatol., 47, 2068-2080.
    Yim, S. Y., B. Wang, and W. Xing, 2014: Prediction of early summer rainfall over South China by a physical empirical model. Clim. Dyn., 43, 1883-1891.
    Yim, S. Y., B. Wang, W. Xing, and M. M. Lu, 2015: Prediction of Meiyu rainfall in Taiwan by multi-lead physical-empirical models. Clim. Dyn., 44, 3033-3042.
    Yim, S. Y., B. Wang, and M. Kwon, 2014: Interdecadal change of the controlling mechanisms for East Asian early summer rainfall variation around the mid-1990s. Clim. Dyn., 42, 1325-1333.
    Yim, S. Y., J. G. Jhun, R. Lu, and B. Wang, 2010: Two distinct patterns of spring Eurasian snow cover anomaly and their impacts on the East Asian summer monsoon. J. Geophys. Res., 115, D22113.

    下載圖示
    QR CODE