研究生: |
林子峮 Lin, Tzu-Chun |
---|---|
論文名稱: |
統計分析遠端參與效應於葡萄糖與半乳糖硫苷醣予體醣鍵結反應 Statistical Analysis of Remote Participation in Glycosylation using Glucose and Galactose Thioglycoside Donors |
指導教授: |
王正中
Wang, Cheng-Chung 吳學亮 Wu, Hsyueh-Liang |
口試委員: |
王正中
Wang, Cheng-Chung 吳學亮 Wu, Hsyueh-Liang 謝俊結 Shie, Jiun-Jie |
口試日期: | 2022/07/08 |
學位類別: |
碩士 Master |
系所名稱: |
化學系 Department of Chemistry |
論文出版年: | 2022 |
畢業學年度: | 110 |
語文別: | 中文 |
論文頁數: | 428 |
中文關鍵詞: | 醣類化學 、醣鍵結反應 、遠端參與效應 、統計分析 |
英文關鍵詞: | Carbohydrate Chemistry, Glycosylation, Remote Participation, Statistical Analysis |
研究方法: | 實驗設計法 |
DOI URL: | http://doi.org/10.6345/NTNU202200989 |
論文種類: | 學術論文 |
相關次數: | 點閱:101 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
醣鍵結反應是醣化學中最重要的反應,但控制其立體選擇性和產率依然是多醣合成的主要挑戰。傳統上,合成1,2-反式醣苷鍵大多利用鄰基效應進行合成。然而尚未得出合成1,2-順式醣苷鍵的通用方法。近期發現了通過位於C-3、C-4或C-6上安裝乙醯基進行的遠程參與來控制醣鍵結反應之立體選擇性。但是,由於羰基的參與程度不明確,這種合成策略在多醣的合成中仍然不實用。
根據本文研究,沿用本實驗室之預測模型,利用統計方法分析醣鍵結反應之立體選擇性,利用C-3,C-4以及C-6位置的乙醯基醣予體與不同位置羥基之醣受體分析其反應性之相關性,並且觀察是否造成遠端效應之存在。
工作流程概述分為四個部分,包括準備醣予體和醣受體、檢測 RRV 和 Aka、進行醣鍵結反應和統計分析其相關性。
Glycosylation is the most important reaction in glycoscience, but controlling stereoselectivity and yield remain the major challenge in the synthesis of oligosaccharides. Traditionally, constructing 1,2-trans glycosidic linkage is relied on neighboring group effect. However, a universal method for the preparation of 1,2-cis linkage is absent. Recently, remote participation by installing C-3, C-4, or C-6 acetyl group was developed to control the stereoselective glycosylation. However, this strategy is still not practical in the synthesis of oligosaccharide due to the unclear participating level of carbonyl group.
According to our research, a quantitative system was established to analyze the stereoselective glycosylation using statistical approach. Herein, we study the correlation between the participating level and acetyl group at C-3, C-4 and C-6 position by using statistical approach. Overview of workflow is four parts including preparing donor and acceptor, detecting the RRV and Aka, doing glycosylation and analyzing the correlation.
[1] Dwek, R. A., Chem. Rev. 1996, 96, 683-720.
[2] Benoff, S., Mol. Hum. Reprod. 1997, 3, 599-637.
[3] Holgersson, J.; Gustafsson, A.; Breimer, M. E., Immunol. Cell Biol. 2005, 83, 694-708.
[4] Stallforth, P.; Lepenies, B.; Adibekian, A.; Seeberger, P. H., J. Med. Chem. 2009, 52, 5561-5577.
[5] Cummings, R. D., Glycoconj. J. 2019, 36, 241-257.
[6] Dodane, V.; Vilivalam, V. D., Pharm. sci. technol. today 1998, 1, 246-253.
[7] Huang, S.; Huang, G., Drug Deliv. 2019, 26, 252-261.
[8] Cheng, K.-C.; Demirci, A.; Catchmark, J. M., Appl. Microbiol. Biotechnol. 2011, 92, 29-44.
[9] Mulloy, B.; Hogwood, J.; Gray, E.; Lever, R.; Page, C. P., Pharmacol. Rev. 2016, 68, 76-141.
[10] Desmet, T.; Soetaert, W.; Bojarová, P.; Křen, V.; Dijkhuizen, L.; Eastwick-Field, V.; Schiller, A., Chem. Eur. J. 2012, 18, 10786-10801.
[11] Igarashi, K., The Koenigs-Knorr reaction. In Advances in Carbohydrate Chemistry and Biochemistry, Elsevier: 1977, Vol. 34, pp 243-283.
[12] Schmidt, R. R.; Michel, J., Angew. Chem. Int. Ed. 1980, 19, 731-732.
[13] Lindhorst, T. K., Essentials of carbohydrate chemistry and biochemistry. John Wiley & Sons, 2007.
[14] Xu, L.; Qi, T.; Xu, L.; Lu, L.; Xiao, M., J. Carbohydr. Chem. 2016, 35, 1-23.
[15] Demchenko, V. A., Curr. Org. Chem. 2003, 7, 35-79.
[16] Crich, D., Acc. Chem. Res. 2010, 43, 1144-1153.
[17] Nigudkar, S. S.; Demchenko, A. V., Chem. Sci. 2015, 6, 2687-2704.
[18] Lee, Y. C.; Lee, R. T., J. Chin. Chem. Soc. 1999, 46, 283-291.
[19] Bohé, L.; Crich, D., Carbohydr. Res. 2015, 403, 48-59.
[20] Chatterjee, S.; Moon, S.; Hentschel, F.; Gilmore, K.; Seeberger, P. H., J. Am. Chem. Soc. 2018, 140, 11942-11953.
[21] Adero, P. O.; Amarasekara, H.; Wen, P.; Bohé, L.; Crich, D., Chem. Rev. 2018, 118, 8242-8284.
[22] Bohé, L.; Crich, D., C. R. Chim. 2011, 14, 3-16.
[23] Chang, C.-W.; Lin, M.-H.; Chan, C.-K.; Su, K.-Y.; Wu, C.-H.; Lo, W.-C.; Lam, S.; Cheng, Y.-T.; Liao, P.-H.; Wong, C.-H.; Wang, C.-C., Angew. Chem. Int. Ed. 2021, 60, 12413-12423.
[24] Chang, C.-W.; Wu, C.-H.; Lin, M.-H.; Liao, P.-H.; Chang, C.-C.; Chuang, H.-H.; Lin, S.-C.; Lam, S.; Verma, V. P.; Hsu, C.-P.; Wang, C.-C., Angew. Chem. Int. Ed. 2019, 58, 16775-16779.
[25] Warrent, R. W.; Caughlan, C. N.; Hargis, J. H.; Yee, K. C.; Bentrude, W. G., J. Org. Chem. 1978, 43, 4266-4270.
[26] Juaristi, E.; Cuevas, G., The Anomeric. Effect 1994.
[27] Cumpstey, I., Org. Biomol. Chem. 2012, 10, 2503-2508.
[28] Chalifoux, W. A.; Tykwinski, R. R., Nat. Chem. 2010, 2, 967-971.
[29] Mydock, L. K.; Demchenko, A. V., Org. Biomol. Chem. 2010, 8, 497-510.
[30] Goodman, L., Neighboring-Group Participation in Sugars. In Advances in Carbohydrate Chemistry, Wolfrom, M. L. 1967, Vol. 22, pp 109-175.
[31] Zeng, Y.; Ning, J.; Kong, F., Carbohydr. Res. 2003, 338, 307-311.
[32] Nukada, T.; Berces, A.; Zgierski, M. Z.; Whitfield, D. M., J. Am. Chem. Soc. 1998, 120, 13291-13295.
[33] Guo, J.; Ye, X.-S., Molecules 2010, 15, 7235-7265.
[34] Williams, R. J.; McGill, N. W.; White, J. M.; Williams, S. J., J. Carbohydr. Chem. 2010, 29, 236-263.
[35] Hansen, T.; Elferink, H.; van Hengst, J. M. A.; Houthuijs, K. J.; Remmerswaal, W. A.; Kromm, A.; Berden, G.; van der Vorm, S.; Rijs, A. M.; Overkleeft, H. S.; Filippov, D. V.; Rutjes, F. P. J. T.; van der Marel, G. A.; Martens, J.; Oomens, J.; Codée, J. D. C.; Boltje, T. J., Nat. Commun. 2020, 11, 2664.
[36] Demchenko, A. V.; Rousson, E.; Boons, G.-J., Tetrahedron Lett. 1999, 40, 6523-6526.
[37] Baek, J. Y.; Lee, B.-Y.; Jo, M. G.; Kim, K. S., J. Am. Chem. Soc. 2009, 131, 17705-17713.
[38] Lourenço, E. C.; Ventura, M. R., Tetrahedron Lett. 2013, 69, 7090-7097.
[39] Komarova, B. S.; Orekhova, M. V.; Tsvetkov, Y. E.; Nifantiev, N. E., Carbohydr. Res. 2014, 384, 70-86.
[40] Baek, J. Y.; Kwon, H.-W.; Myung, S. J.; Park, J. J.; Kim, M. Y.; Rathwell, D. C. K.; Jeon, H. B.; Seeberger, P. H.; Kim, K. S., Tetrahedron Lett. 2015, 71, 5315-5320.
[41] Xu, H.; Chen, L.; Zhang, Q.; Feng, Y.; Zu, Y.; Chai, Y., Chem.: Asian J. 2019, 14, 1424-1428.
[42] Abronina, P. I.; Zinin, A. I.; Romashin, D. A.; Malysheva, N. N.; Chizhov, A. O.; Kononov, L. O., Synlett 2015, 26, 2267-2271.
[43] Komarova, B. S.; Tsvetkov, Y. E.; Nifantiev, N. E., Chem. Rec. 2016, 16, 488-506.
[44] Xu, K.; Man, Q.; Zhang, Y.; Guo, J.; Liu, Y.; Fu, Z.; Zhu, Y.; Li, Y.; Zheng, M.; Ding, N., Org. Chem. Front. 2020, 7, 1606-1615.
[45] Zhang, Y.; He, H.; Chen, Z.; Huang, Y.; Xiang, G.; Li, P.; Yang, X.; Lu, G.; Xiao, G., Angew. Chem. Int. Ed. 2021, 60, 12597-12606.
[46] Lin, M.-H.; Chang, C.-W.; Chiang, T.-Y.; Dhurandhare, V. M.; Wang, C.-C., Org. Lett. 2021, 23, 7313-7318.
[47] Liu, X.; Song, Y.; Liu, A.; Zhou, Y.; Zhu, Q.; Lin, Y.; Sun, H.; Zhu, K.; Liu, W.; Ding, N.; Xie, W.; Sun, H.; Yu, B.; Xu, P.; Li, W., Angew. Chem. Int. Ed. 2022, DOI: doi.org/10.1002/anie.202201510
[48] Demchenko, A.; Stauch, T.; Boons, G.-J., Synlett 1997, 1997, 818-820.
[49] Satoh, H.; Hansen, H. S.; Manabe, S.; van Gunsteren, W. F.; Hünenberger, P. H., J. Chem. Theory Comput. 2010, 6, 1783-1797.
[50] Lu, S.-R.; Lai, Y.-H.; Chen, J.-H.; Liu, C.-Y.; Mong, K.-K. T., Angew. Chem. Int. Ed. 2011, 50, 7315-7320.
[51] Mensah, E. A.; Nguyen, H. M., J. Am. Chem. Soc. 2009, 131, 8778-8780.
[52] Mensah, E. A.; Yu, F.; Nguyen, H. M., J. Am. Chem. Soc. 2010, 132, 14288-14302.
[53] McKay, M. J.; Nguyen, H. M., ACS Catal. 2012, 2, 1563-1595.
[54] Cox, D. J.; Fairbanks, A. J., Tetrahedron: Asymmetry 2009, 20, 773-780.
[55] Yasomanee, J. P.; Demchenko, A. V., J. Am. Chem. Soc. 2012, 134, 20097-20102.
[56] Braak, F. t.; Elferink, H.; Houthuijs, K. J.; Oomens, J.; Martens, J.; Boltje, T. J., Acc. Chem. Res. 2022.
[57] Martin, A.; Arda, A.; Désiré, J.; Martin-Mingot, A.; Probst, N.; Sinaÿ, P.; Jiménez-Barbero, J.; Thibaudeau, S.; Blériot, Y., Nat. Chem. 2016, 8, 186-191.
[58] Greis, K.; Kirschbaum, C.; Fittolani, G.; Mucha, E.; Chang, R.; von Helden, G.; Meijer, G.; Delbianco, M.; Seeberger, P. H.; Pagel, K., Eur. J. Org. Chem. 2022, DOI: doi.org/10.1002/ejoc.202200255
[59] Lebedel, L.; Ardá, A.; Martin, A.; Désiré, J.; Mingot, A.; Aufiero, M.; Aiguabella Font, N.; Gilmour, R.; Jiménez-Barbero, J.; Blériot, Y.; Thibaudeau, S., Angew. Chem. Int. Ed. 2019, 58, 13758-13762.
[60] Marianski, M.; Mucha, E.; Greis, K.; Moon, S.; Pardo, A.; Kirschbaum, C.; Thomas, D. A.; Meijer, G.; von Helden, G.; Gilmore, K.; Seeberger, P. H.; Pagel, K., Angew. Chem. Int. Ed. 2020, 59, 6166-6171.
[61] Upadhyaya, K.; Subedi, Y. P.; Crich, D., Angew. Chem. Int. Ed. 2021, 60, 25397-25403.
[62] Elferink, H.; Severijnen, M. E.; Martens, J.; Mensink, R. A.; Berden, G.; Oomens, J.; Rutjes, F. P. J. T.; Rijs, A. M.; Boltje, T. J., J. Am. Chem. Soc. 2018, 140, 6034-6038.
[63] de Kleijne, F. F. J.; Elferink, H.; Moons, S. J.; White, P. B.; Boltje, T. J., Angew. Chem. Int. Ed. 2022, 61, DOI:doi.org/10.1002/anie.202109874
[64] Fraser-Reid, B.; López, J. C., Armed–Disarmed Effects in Carbohydrate Chemistry: History, Synthetic and Mechanistic Studies. In Reactivity Tuning in Oligosaccharide Assembly. Springer Berlin Heidelberg: Berlin, Heidelberg, 2011, pp 1-29.
[65] Fraser-Reid, B.; Wu, Z.; Udodong, U. E.; Ottosson, H., J. Org. Chem. 1990, 55, 6068-6070.
[66] Sinnott, M. L., Chem. Rev. 1990, 90, 1171-1202.
[67] Zhang, Z.; Ollmann, I. R.; Ye, X.-S.; Wischnat, R.; Baasov, T.; Wong, C.-H., J. Am. Chem. Soc. 1999, 121, 734-753.
[68] van der Vorm, S.; Hansen, T.; van Hengst, J. M. A.; Overkleeft, H. S.; van der Marel, G. A.; Codée, J. D. C., Chem. Soc. Rev. 2019, 48, 4688-4706.
[69] Tsutsui, M.; Sianturi, J.; Masui, S.; Tokunaga, K.; Manabe, Y.; Fukase, K., Eur. J. Org. Chem. 2020, 2020, 1802-1810.
[70] Zhang, Z.; Wong, C.-H., Tetrahedron Lett. 2002, 58, 6513-6519.
[71] Wang, Z.; Zhou, L.; El-Boubbou, K.; Ye, X.-S.; Huang, X., J. Org. Chem. 2007, 72, 6409-6420.
[72] Lecourt, T.; Herault, A.; Pearce, A. J.; Sollogoub, M.; Sinaÿ, P., Chem. Eur. J. 2004, 10, 2960-2971.