簡易檢索 / 詳目顯示

研究生: 陳業鴻
Chen, Yeh-Horng
論文名稱: IEEE 802.11e HCCA中改善變動位元速率資料傳輸效能上鏈排程演算法之研究
A study of Uplink Scheduling Algorithms to Improve the Performance of VBR traffic in IEEE 802.11e HCCA
指導教授: 黃政吉
Huang, Jeng-Ji
學位類別: 碩士
Master
系所名稱: 電機工程學系
Department of Electrical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 76
中文關鍵詞: IEEE 802.11eHCCA排程變動位元速率無線區域網路允入控制
英文關鍵詞: IEEE 802.11e, HCCA, scheduling, variable bit rate (VBR), WLAN, admission control
論文種類: 學術論文
相關次數: 點閱:168下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

在IEEE 802.11e HCF (hybrid coordination function)提供以集中式輪詢(polling)機制來存取通道,稱為HCCA (HCF controlled channel access)。存取點(access point, AP)透過排程機制(scheduling),將可提供即時多媒體影音資料的服務品質(QoS)保證。為了改善上鏈傳輸變動位元速率(VBR)資料流的效能,過去有不少學者提出研究,例如ARROW排程演算法,此方法藉由回授方式將資料累積量上傳給QAP來給予精確的頻寬分配,但是因回授與分配頻寬為不同時間之動作,產生的傳送延遲將造成資料封包超過延遲時間限制而遺失。因此在本論文中,將提出一個四路輪詢排程演算法。在輪詢上鏈QSTA時,此排程器將會直接詢問緩衝器情況,並且立即給予精確的頻寬分配。同時論文中也會提出數學模型來對四路輪詢演算法和ARROW進行數值效能分析,也將藉由ns-2的實驗模擬將會看到本論文作法相較於ARROW除了在平均封包遺失率上可有效地降低,同時也能得到更大的容量並滿足多媒體影音服務品質。
而在IEEE 802.11e HCCA中,同時也需考慮系統的允入控制,藉由允入控制功能可計算出系統容量,並且給予進入連線所要求的服務品質。對於VBR類型的資料流,學者提出RVAC (Rate-Variance-envelop-based Admission Control)方法,利用Dual Token Bucket機制將進入系統的資料流塑形外,同時將統計多工增益的觀念引入HCCA。但在此方法中,並未考慮不同資料流的延遲限制差別與實際排程之情況,喪失能取得較大多工增益之效能。故我們將提出一個在Rate-Variance-envelop基礎下針對VBR之高效率動態允入控制的設計想法,將考慮各別資料流延遲特性,動態調整允入方式讓系統頻寬消耗較少、得到較大的多工。最後,由分析結果將會看到本論文作法相較於RVAC能讓整體效能改進,有效提升系統容量。

In IEEE 802.11e, a centralized polling based channel access mechanism is provided for the quality-of-service (QoS) provision of real-time applications. In order to improve bandwidth efficiency of polling for uplink variable bit rate (VBR) sources, it has previously been proposed in, e.g., ARROW, that the amount of backlogged traffic is fed back for exact bandwidth allocation. However, due to that the feedback and the bandwidth allocation are performed separately in two different polls, transmission latency incurred by packets could cause them to violate delay constraint. In this paper, a four-way-polling scheduler is first proposed by directly inquiring buffer occupancy information of an uplink station during a poll. Theoretical analysis is then performed to evaluate the performance of both the proposed scheduler and ARROW. From both numerical and ns-2 simulation results, it is shown that packet loss rates can effectively be reduced and more capacity can thereby be obtained under the proposed scheduler, as compared with ARROW.
  Besides, there is also a need to consider the admission control of VBR traffic over HCCA. RVAC has previously been proposed to improve network utilization. In RVAC, Dual Token Bucket shaper is applied and the existing statistical multiplexing framework is proposed to design admission control scheme. However, RVAC fails to consider the characteristics of distinct VBR traffic flows, so it cannot satisfactorily exploit statistical multiplexing gain. In this paper, we design an admission control scheme that effectively acquire additional multiplexing gain based on Rate-Variance- envelop to deal with different delay requirements of VBR traffic flows. From numerical results, it is shown that more capacity can be obtained under the proposed admission control scheme.

中文摘要 i 英文摘要 iii 誌  謝 v 目  錄 vi 圖 目 錄 viii 表 目 錄 x 第一章 緒論 1 1.1 研究動機與背景 1 1.2 研究目的 3 1.3 其他相關研究 6 1.4 論文架構 7 第二章  相關知識與排程器介紹 8 2.1 IEEE 802.11 WLAN 介紹 8 2.1.1 分散式協調功能(DCF)介紹 8 2.1.2 集中式協調功能(PCF)介紹 12 2.2 IEEE 802.11e介紹 15 2.2.1 IEEE 802.11e EDCA介紹 15 2.2.2 IEEE 802.11e HCCA介紹 19 2.3 HCCA參考排程演算法 22 2.4 SETT-EDD排程演算法 25 2.5 ARROW參考排程演算法 28 2.6 模擬軟體Network Simulator 2 (ns-2) 32 第三章  論文作法之四路輪詢排程器介紹 35 3.1 研究作法之動機 35 3.2 排程演算法設計 36 3.3 排程演算法執行流程與架構 39 3.4 排程演算法數值效能分析 41 3.4.1 論文排程器數值效能分析 42 3.4.2 ARROW排程器數值效能分析 45 3.5 排程器數值分析與實驗模擬結果 48 3.5.1 數值效能模擬情境與參數設定 48 3.5.2 數值與模擬結果分析比較 49 3.5.3 實驗環境與參數設定 51 3.5.4 實驗模擬結果分析比較 52 第四章 Rate-Variance-envelop基礎下針對VBR之高效率動態允入控制 57 4.1 研究作法之動機和目的 57 4.2 Rate-Variance-envelop-based允入控制的基本架構 58 4.3 提出之允入控制作法介紹 61 4.4 提出之允入控制執行流程 64 4.5 允入效能分析 65 4.5.1 環境與參數設定 65 4.5.2 允入效能分析結果比較 66 第五章  結論 69 參考文獻 71 自  傳 73

[1] IEEE 802.11 WG: IEEE Standard 802.11-1999, Part 11: Wireless LAN MAC and Physical Layer Specifications. Reference number ISO/IEC 8802-11:1999(E), 1999.
[2] IEEE Std. 802.11e, “Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications– Medium Access Control (MAC) Quality of Service Enhancements,” Nov. 2005.
[3] S. Mangold, S. Choi, G. R. Hiertz, et al, “Analysis of IEEE 802.11e for QoS Support in Wireless LANs”, IEEE Wireless Communications, Volume 10, Issue 6, Dec, 2003.
[4] A. Grilo, M. Macedo, and M. Nunes, “A Scheduling Algorithm for QoS Support in IEEE802.11e Networks,” IEEE Wirel. Commun. Mag., vol. 10, no. 3, June 2003, pp. 36–43.
[5] D. Skyrianoglou, N. Passas, and A. K. Salkintzis, “ARROW: An Efficient Traffic Scheduling Algorithm for IEEE 802.11e HCCA,” IEEE Trans. Wirel. Commun., vol. 5, no. 12, Dec. 2006, pp. 3558–3567.
[6] I. Inan, F. Keceli, and E. Ayanoglu, “An Adaptive Multimedia QoS Scheduler for 802.11e Wireless LANs”, IEEE ICC, vol. 11, June 2006, pp. 5263–5270.
[7] G. Boggia, P. Camarda, L.A. Grieco, and S. Mascolo, “Feedback-Based Control for Providing Real-Time Services with the 802.11e MAC,” IEEE/ACM Transactions on Networking, vol. 15, no. 2, Apr. 2007, pp. 323–333.
[8] Chiapin Wang, Po-Chiang Lin, T. Lin,” A Cross-Layer Adaptation Scheme for Improving IEEE 802.11e QoS by Learning”, IEEE Trans. Neural Networks, Volume 17, Issue 6, Nov. 2006, pp. 1661 – 1665.
[9] Wing Fai Fan, Deyun Gao, D.H.K. Tsang, B Bensaou, ”Admission control for variable bit rate traffic in IEEE 802.11e WLANs” The 13th IEEE Workshop on 25-28 April 2004, pp. 61 – 66.
[10] D. Gao, J. Cai, and L. Zhang, “Physical Rate-Based Admission Control for HCCA in IEEE 802.11e WLANs,” Proc. IEEE 19th Int’l. Conf. Adv. Info. Net. and Apps, Taiwan, Mar. 2005.
[11] Deyun Gao, Jianfei Cai, and Chang Wen Chen, “Admission Control Based on Rate-Variance Envelop for VBR Traffic Over IEEE 802.11e HCCA WLANs,” IEEE Transactions on Vehicular Technology, VOL. 57, pp. 1778 - 1788, May 2008.
[12] Qinglin Zhao and Danny H.K. Tsang, “An Equal-Spacing-Based Design for QoS Guarantee in IEEE 802.11e HCCA Wireless Networks,” IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 7, NO. 12, pp. 1474 – 1490, Dec. 2008.
[13] Daojun Xue,Yang Qin, and Chee Kheong Siew, “A Service Curve Based Scheduling Algorithm for QoS Support in 802.11e Wireless LANs,” IEEE GLOBECOM '06, San Francisco, pp. 1 - 6, Nov. 2006.
[14] Y. Higuchi, A. Foronda, C. Ohta, M. Yoshimoto, Y. Okada , “Delay Guarantee and Service Interval Optimization for HCCA in IEEE 802.11e WLANs,” IEEE Wireless Communications and Networking Conference, pp. 2080-2085, March 2007.
[15] Chun-Ting Chou; S.N. Shankar, K.G. Shin, “Achieving per-stream QoS with distributed airtime allocation and admission control in IEEE 802.11e wireless LANs,” IEEE INFOCOM, pp. 1584 - 1595 vol. 3, March 2005.
[16] M. Schaar, Y. Andreopoulos, Zhiping Hu, “Optimized scalable video streaming over IEEE 802.11 a/e HCCA wireless networks under delay constraints,” IEEE Mobile Computing, pp. 755 - 768 vol. 3, June 2006.
[17] Jeng-Ji Huang, Che-Yu Chang, and Huei-Wen Ferng, “Flexible TXOP assignments for efficient QoS scheduling in IEEE 802.11e WLANs,” Wireless and Optical Communications Networks, 2008, pp. 1 - 5,2008.
[18] J.-J. Huang, Y.-H. Chen, and C.-Y. Chang, “An MSI-based Scheduler for IEEE 802.11e HCCA,” in Proc. IEEE VTC2009-Fall, Sept. 2009.
[19] Z. N. Kong, D. H. K. Tsang, B. Bensaou, and D. Gao, “Performance Analysis of IEEE 802.11e Contention-Based Channel Access,” IEEE J. Select. Areas Commun, vol. 22, no. 10, pp. 2095–2106, Dec. 2004.
[20] Z. Tao and S. Panwar, “An Analytical Model for the IEEE 802.11e Enhanced Distributed Coordination Function,” in Proc. IEEE ICC’04, pp. 4111–4117, June 2004.
[21] [Online] IEEE 802.11e HCCA simulation using the Network Simulator 2 Available: http://info.iet.unipi.it/~cng/ns2hcca/
[22] [Online] Video Traces for Network Performance Evaluation. Available:http://trace.eas.asu.edu/
[23] C. Cicconetti, L. Lenzini, E. Mingozzi, and G. Stea, “A Software Architecture for Simulating IEEE 802.11e HCCA,” Proc. of the 3rd Internet Performance, Simulation, Monitoring and Measurement (IPS-MoMe 2005), Warsaw (Poland), pp. 97-104, March 14-15, 2005.
[24] E. W. Knightly, “Second moment resource allocation in multi-service networks,” in Proc. ACM SIGMETRICS, Seattle, WA, 1997, pp. 181–191.
[25] E. W. Knightly, “Enforceable quality of service guarantees for bursty traffic streams,” in Proc. IEEE INFOCOM, San Francisco, CA, 1998, vol. 2, pp. 635–642.
[26] 張哲瑜,“IEEE 802.11e HCCA 中改善傳輸效能之動態排程演算法”, 國立臺灣師範大學應用電子科技學系 , 碩士學位 , 2008年6月

下載圖示
QR CODE