簡易檢索 / 詳目顯示

研究生: 王為新
Wang, Wei-Hsin
論文名稱: 六週高強度間歇訓練後冷水浸泡介入對下肢肌力及肌耐力表現之影響
Effect of post-exercise cold water immersion on lower limb strength and muscular endurance during a six-week high intensity interval training
指導教授: 王鶴森
Wang, Ho-Seng
學位類別: 碩士
Master
系所名稱: 體育學系
Department of Physical Education
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 43
中文關鍵詞: 冷療運動後恢復高強度運動肌肉適能
英文關鍵詞: cryotherapy, post-exercise recovery, high intensity training, muscle fitness
DOI URL: http://doi.org/10.6345/NTNU202000509
論文種類: 學術論文
相關次數: 點閱:302下載:44
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 背景:有些運動員會在高強度訓練或比賽後,透過冷水浸泡作為避免遲發性肌肉痠痛和加速恢復的手段,但研究也指出在阻力訓練後長期實施冷水浸泡可能會降低肌肉合成及抑制肌力表現的成長。高強度間歇訓練也是運動員經常採用的訓練方式,惟若在高強度間歇訓練後進行冷水浸泡,對肌力表現是否亦有負面影響,仍待釐清。目的:探討六週高強度間歇運動後冷水浸泡介入對下肢肌力及肌耐力之影響。方法:受試者為10名體育系男性 (年齡:23.2 ± 2.7歲),於跑步機上進行為期六週,每週2次 (共12次) 之高強度間歇跑步訓練,每次訓練強度為90~95% HRmax持續4分鐘,主動恢復為70% HRmax持續3分鐘,共四組循環。所有受試者並依隨機分派方式將其下肢分為冷水浸泡腳及控制腳,於每次訓練後冷水浸泡腳進行10分鐘10 ℃的冷水浸泡,控制腳則不進行任何處理,並檢測訓練前 (前測)、第三週訓練後 (中測) 及第六週訓練後 (後測) 之膝伸展最大肌力、膝伸展肌耐力 (40 % 1RM*反覆次數) 及大腿肌肉量。所得數據以二因子重複量數變異數分析進行統計處理。結果:(1) 最大肌力:冷水浸泡腳在中測 (53.5 ± 10.2 kg) 及後測 (54.3 ± 10.1kg) 均顯著低於控制腳 (中測:55.7 ± 9.5kg、 後測:56.8 ± 9.4kg;p < .05),且控制腳中測 (↑ 3.9 %) 及後測 (↑ 5.8 %) 之最大肌力均顯著大於前測 (p < .05)。(2) 肌耐力:冷水浸泡腳之中測 (591.3 ± 184.1 kg) 及後測 (629.7 ± 192.3 kg) 均顯著低於控制腳 (中測:680.1 ± 173.2 kg、後測:755.0 ± 182.1 kg;p < .05),冷水浸泡腳與控制腳之中測與後測均顯著高於前測,但僅控制腳之後測顯著高於中測 (p < .05)。(3) 肌肉量:不論處理或時間因子均無顯著差異。結論:連續六週高強度間歇訓練後進行冷水浸泡,不利於最大肌力及肌耐力表現之進步。

    Introduction: Cold water immersion (CWI) is an alternative strategy for some athletes to avoid DOMS and accelerate recovery after high intensity training or competitions. However, several studies had indicated that long-term CWI may reduce muscle synthesis rate and muscle strength. High intensity interval training (HIIT) is also a mode usually used by athletes. It still needs to be clarified whether cold water immersion after high intensity interval training has a negative effect on muscle strength. Therefore, the purpose of this study was to investigate the influence of CWI following HIIT exercises on lower limb strength and muscular endurance during six weeks. Methods: A total of 10 active males (age: 23.2 ± 2.7 years) performed HIIT on a treadmill for 6 weeks, 2 times per week (12 times in total). The training intensity of each time was 90~95% HRmax for 4 minutes, and the active recovery was 70% HRmax for 3 minutes, a total of 4 cycles. All subjects’ legs were randomly divided into two treatments: cooled leg and control leg. After each training, the cooled leg was immersed in cold water for 10 minutes at 10 °C. The control leg was not treated. Data were collected from the first test before training (PRE), the second test after the third week (MID), and the third test after the sixth week (POST), as regards the knee extension muscle strength, knee extension muscular endurance (40% 1RM* repeated times) and thigh muscle mass. The obtained data were statistically processed by two-way repeated-measures ANOVA analysis. Results: (1) Muscle strength: The muscle strength of the cooled leg (MID: 55.7 ± 9.5 kg, POST: 56.8 ± 9.4 kg; p < .05) was significantly lower than that of the control leg in the MID (53.5 ± 10.2 kg) and the POST (54.3 ± 10.1 kg), and the muscle strength of the control leg in the POST (↑ 5.8 %) and the MID (↑ 3.9 %) were significantly greater than that of the PRE (p < .05). (2) Muscular endurance: The muscular endurance of the cooled leg (MID:591.3 ± 184.1 kg, POST:629.7 ± 192.3 kg) was significantly lower than that of the control leg in the MID (680.1 ± 173.2 kg) and the POST (755.0 ± 182.1 kg). And the muscular endurance of the cooled leg and control leg in the MID and POST were significantly higher than that of the PRE, but only that of the control leg in the POST was significantly higher than that of the MID (p < .05). (3) Muscle mass: There were no significant differences in treatment or time factor. Conclusion: Cold water immersion after 6 weeks of high intensity interval training attenuates the improvement of muscle strength and muscular endurance.

    中文摘要 i 英文摘要 ii 目次 ⅳ 表次 vi 圖次 vi 第壹章 緒論 1 第一節 問題背景 1 第二節 研究目的 3 第三節 研究假設 3 第四節 名詞操作性定義 4 第五節 研究範圍及限制 5 第六節 研究重要性 5 第貳章 文獻探討 6 第一節 冷水浸泡之介紹 6 第二節 冷水浸泡對肌力及肌耐力之影響 7 第三節 高強度間歇訓練對肌力及肌耐力之影響 11 第四節 本章總結 14 第參章 研究方法 15 第一節 研究受試者 15 第二節 實驗時間與地點 15 第三節 實驗流程 15 第四節 實驗方法與步驟 18 第五節 資料處理與統計分析 24 第肆章 結果 25 第一節 受試者基本資料 25 第二節 肌力表現 26 第三節 肌耐力表現 27 第四節 身體組成 29 第伍章 討論 30 第一節 六週高強度間歇訓練後冷水浸泡介入對肌力表現之影響 30 第二節 六週高強度間歇訓練後冷水浸泡介入對肌耐力表現之影響 31 第三節 六週高強度間歇訓練後冷水浸泡介入對身體組成之影響 32 第四節 結論與建議 33 參考文獻 35 附錄 39 附錄一 受試者須知 41 附錄二 健康及訓練情況調查表 42 附錄三 受試者同意書 43

    Aguiar, P., Magalhães, S., Rocha-Vieira, E., Magalhães, F., & Amorim, F. (2015). 4 weeks of High Intensity Interval Training Improves Muscle Endurance: 2917 Board# 232 May 29, 330 PM-500 PM. Medicine & Science in Sports & Exercise, 47(5S), 798-799. doi: 10.1249/01.mss.0000478919.42372.8d

    Astorino, T. A., Allen, R. P., Roberson, D. W., & Jurancich, M. (2012). Effect of high-intensity interval training on cardiovascular function, VO2max, and muscular force. The Journal of Strength amd Conditioning Research, 26(1), 138-145.

    Armstrong, R. B. (1984). Mechanisms of exercise-induced delayed onset muscular soreness: a brief review. Medicine and Science in Sports and Exercise, 16(6), 529-538.

    Baar, K., & Esser, K. (1999). Phosphorylation of p70S6kcorrelates with increased skeletal muscle mass following resistance exercise. American Journal of Physiology-Cell Physiology, 276(1), C120-C127.

    Bellamy, L. M., Joanisse, S., Grubb, A., Mitchell, C. J., McKay, B. R., Phillips, S. M., ... &. Parise, G. (2014). The acute satellite cell response and skeletal muscle hypertrophy following resistance training. PloS one, 9(10), e109739.

    Bernard, O., Ouattara, S., Maddio, F., Jimenez, C., Charpenet, A., Melin, B., & Bittel, J. (2000). Determination of the velocity associated with VO2max. Medicine and Science in Sports and Exercise, 32(2), 464.

    Beyranvand, F. (2017). Sprint interval training improves aerobic and anaerobic power in trained female futsal players. International Journal of Kinesiology and Sports Science, 5(2), 43-47.

    Bleakley, C., McDonough, S., Gardner, E., Baxter, D. G., Hopkins, T. J., Davison, G. W., & Costa, M. T. (2012). Cold-water immersion (cryotherapy) for preventing and treating muscle soreness after exercise. Sao Paulo Medical Journal, 130(5), 348-348.

    Broatch, J. R., Petersen, A., & Bishop, D. J. (2018). The influence of post-exercise cold-water immersion on adaptive responses to exercise: a review of the literature. Sports Medicine, 48(6), 1369-1387. doi: 10.1007 / s40279-018-0910-8

    Burgomaster, K. A., Hughes, S. C., Heigenhauser, G. J., Bradwell, S. N., & Gibala, M. J. (2005). Six sessions of sprint interval training increases muscle oxidative potential and cycle endurance capacity in humans. Journal of Applied Physiology, 98(6), 1985-1990.

    Dreyer, H. C., Fujita, S., Cadenas, J. G., Chinkes, D. L., Volpi, E., & Rasmussen, B. B. (2006). Resistance exercise increases AMPK activity and reduces 4E‐BP1 phosphorylation and protein synthesis in human skeletal muscle. The Journal of Physiology, 576(2), 613-624.

    Dupuy, O., Douzi, W., Theurot, D., Bosquet, L., & Dugué, B. (2018). An evidence-based approach for choosing post-exercise recovery techniques to reduce markers of muscle damage, soreness, fatigue and inflammation: a systematic review with meta-analysis. Frontiers in Physiology, 9, 403.

    Earle, R. W. & Baechle, T. R. (2008). Essentials of strength training and conditioning (3rd ed.).Champaign, IL: Human Kinetics.

    Estes, R. R., Malinowski, A., Piacentini, M., Thrush, D., Salley, E., Losey, C., & Hayes, E. (2017). The Effect of High Intensity Interval Run Training on Cross-sectional Area of the Vastus Lateralis in Untrained College Students. International Journal of Exercise Science, 10(1), 137.

    Fröhlich, M., Faude, O., Klein, M., Pieter, A., Emrich, E., & Meyer, T. (2014). Strength training adaptations after cold-water immersion. The Journal of Strength and Conditioning Research, 28(9), 2628-2633.

    Fujita, S., Rasmussen, B. B., Cadenas, J. G., Grady, J. J., & Volpi, E. (2006). Effect of insulin on human skeletal muscle protein synthesis is modulated by insulin-induced changes in muscle blood flow and amino acid availability. American Journal of Physiology-Endocrinology and Metabolism, 291(4), E745-E754.

    García-Pinillos, F., Cámara-Pérez, J. C., Soto-Hermoso, V. M., & Latorre-Román, P. Á. (2017). A High Intensity Interval Training (HIIT)-based running plan improves athletic performance by improving muscle power. The Journal of Strength and Conditioning Research, 31(1), 146-153.

    Gibala, M. J., Little, J. P., MacDonald, M. J., & Hawley, J. A. (2012). Physiological adaptations to low‐volume, high‐intensity interval training in health and disease. The Journal of Physiology, 590(5), 1077-1084.

    Gibala, M. J., & McGee, S. L. (2008). Metabolic adaptations to short-term high-intensity interval training: a little pain for a lot of gain?. Exercise and Sport Sciences Reviews, 36(2), 58-63.

    Gregson, W., Black, M. A., Jones, H., Milson, J., Morton, J., Dawson, B., ... & Green, D. J. (2011). Influence of cold water immersion on limb and cutaneous blood flow at rest. The American Journal of Sports Medicine, 39(6), 1316-1323.

    Herbert, P., Hayes, L. D., Sculthorpe, N. F., & Grace, F. M. (2017). HIIT produces increases in muscle power and free testosterone in male masters athletes. Endocrine Connections, 6(7), 430-436.

    Laursen, P. B. (2010). Training for intense exercise performance: high‐intensity or high‐volume training?. Scandinavian Journal of Medicine and Science in Sports, 20, 1-10.

    Laursen, P. B., & Jenkins, D. G. (2002). The scientific basis for high-intensity interval training. Sports Medicine, 32(1), 53-73.

    Leeder, J., Gissane, C., van Someren, K., Gregson, W., & Howatson, G. (2012). Cold water immersion and recovery from strenuous exercise: a meta-analysis. Br J Sports Med, 46(4), 233-240.

    Kinnunen, J. V., Piitulainen, H., & Piirainen, J. M. (2019). Neuromuscular adaptations to short-term high-intensity interval training in female ice-hockey players. The Journal of Strength and Conditioning Research, 33(2), 479-485.

    Machado, A. F., Ferreira, P. H., Micheletti, J. K., de Almeida, A. C., Lemes, Í. R., Vanderlei, F. M., ... & Pastre, C. M. (2016). Can water temperature and immersion time influence the effect of cold water immersion on muscle soreness? A systematic review and meta-analysis. Sports Medicine, 46(4), 503-514.

    Mawhinney, C., Jones, H., Joo, C. H., Low, D. A., Green, D. J., & Gregson, W. (2013). Influence of cold-water immersion on limb and cutaneous blood flow after exercise. Medicine and Science in Sports and Exercise, 45(12), 2277-2285.

    McConnell, T. R., & Clark, B. A. (1988). Treadmill protocols for determination of maximum. oxygen uptake in runners. British Journal of Sports Medicine, 22(1), 3-5.

    Mitchell, C. J., Churchward-Venne, T. A., Parise, G., Bellamy, L., Baker, S. K., Smith, K., ... & Phillips, S. M. (2014). Acute post-exercise myofibrillar protein synthesis is not correlated with resistance training-induced muscle hypertrophy in young men. PLOS One, 9(2), e89431.

    Montgomery, P. G., Pyne, D. B., Hopkins, W. G., Dorman, J. C., Cook, K., & Minahan,C. L. (2008). The effect of recovery strategies on physical performance and cumulative fatigue in competitive basketball. Journal of Sports Sciences, 26(11), 1135-1145. doi: 10.1001/jama.209.6.918

    Nickerson, B. S., McLester, C. N., McLester, J. R., & Kliszczewicz, B. M. (2020).Agreement between 2 segmental bioimpedance devices, BOD POD, and DXA in obese adults. Journal of Clinical Densitometry, 23(1), 138-148. doi:10.1016 / j.jocd.2019.04.005

    Ohnishi, N., Yamane, M., Uchiyama, N., Shirasawa, S., Kosaka, M., Shiono, H., & Okada, T. (2004). Adaptive changes in muscular performance and circulation by resistance training with regular cold application. Journal of Thermal Biology, 29(7-8), 839-843.

    Panissa, V. L. G., Alves, E. D., Salermo, G. P., Franchini, E., & Takito, M. Y. (2016). Can short-term high-intensity intermittent training reduce adiposity?. Sport Sciences for Health, 12(1), 99-104.

    Petrella, J. K., Kim, J. S., Mayhew, D. L., Cross, J. M., & Bamman, M. M. (2008). Potent. myofiber hypertrophy during resistance training in humans is associated with satellite cell-mediated myonuclear addition: a cluster analysis. Journal of Applied Physiology, 104(6), 1736-1742.

    Roberts, L. A., Raastad, T., Markworth, J. F., Figueiredo, V. C., Egner, I. M., Shield, A., ... & Peake, J. M. (2015). Post‐exercise cold water immersion attenuates acute anabolic signalling and long‐term adaptations in muscle to strength training. The Journal of Physiology, 593(18), 4285-4301.

    Rowsell, G. J., Coutts, A. J., Reaburn, P., & Hill-Haas, S. (2011). Effect of post-match cold-water immersion on subsequent match running performance in junior soccer players during tournament play. Journal of Sports Sciences, 29(1), 1-6. doi: 10.1080/02640414.2010.512640

    Santos, W. O. C., Brito, C. J., Júnior, E. A. P., Valido, C. N., Mendes, E. L., Nunes, M. A. P., & Franchini, E. (2012). Cryotherapy post-training reduces muscle damage markers in jiu-jitsu fighters.

    Sharkey, B. J., & Gaskill, S. E. (2006). Sport Physiology for Coaches (Vol. 10). Human Kinetics.

    Staron, R. S., Karapondo, D. L., Kraemer, W. J., Fry, A. C., Gordon, S. E., Falkel, J. E., ... & Hikida, R. S. (1994). Skeletal muscle adaptations during early phase of heavy-resistance training in men and women. Journal of applied physiology, 76(3), 1247-1255.

    Terzis, G., Georgiadis, G., Stratakos, G., Vogiatzis, I., Kavouras, S., Manta, P., ... &. Blomstrand, E. (2008). Resistance exercise-induced increase in muscle mass correlates with p70S6 kinase phosphorylation in human subjects. European Journal of Applied Physiology, 102(2), 145-152.

    Timmerman, K. L., Lee, J. L., Fujita, S., Dhanani, S., Dreyer, H. C., Fry, C. S., ... & Volpi, E. (2010). Pharmacological vasodilation improves insulin-stimulated muscle protein anabolism but not glucose utilization in older adults. Diabetes.

    Thorstensson, A., Sjödin, B., & Karlsson, J. (1975). Enzyme activities and muscle strength after “sprint training” in man. Acta Physiologica Scandinavica, 94(3), 313-318.

    Wakabayashi, H., Wijayanto, T., & Tochihara, Y. (2017). Neuromuscular function during knee extension exercise after cold water immersion. Journal of Physiological Anthropology, 36(1), 28.

    Wiewelhove, T., Fernandez-Fernandez, J., Raeder, C., Kappenstein, J., Meyer, T., Kellmann, M., ... & Ferrauti, A. (2016). Acute responses and muscle damage in different high-intensity interval running protocols. The Journal of Sports Medicine and Physical Fitness, 56(5), 606-615.

    Wilcock, I. M., Cronin, J. B., & Hing, W. A. (2006). Physiological response to water immersion. Sports Medicine, 36(9), 747-765.

    Yamane, M., Ohnishi, N., & Matsumoto, T. (2015). Does regular post-exercise cold. application attenuate trained muscle adaptation?. International Journal of Sports Medicine, 36(08), 647-653.

    Yamane, M., Teruya, H., Nakano, M., Ogai, R., Ohnishi, N., & Kosaka, M. (2006). Post-exercise leg and forearm flexor muscle cooling in humans attenuates endurance and resistance training effects on muscle performance and on circulatory adaptation. European Journal of Applied Physiology, 96(5), 572-580.

    下載圖示
    QR CODE