研究生: |
黃詠寧 Huang, Yong-Ning |
---|---|
論文名稱: |
以金/銀奈米長方體製作為非酶電化學葡萄糖感測器 Au@Ag Nanocuboids for Nonenzymatic Electrochemical Glucose Sensor |
指導教授: |
陳家俊
Chen, Chia-Chun |
學位類別: |
碩士 Master |
系所名稱: |
化學系 Department of Chemistry |
論文出版年: | 2020 |
畢業學年度: | 108 |
語文別: | 中文 |
論文頁數: | 38 |
中文關鍵詞: | 金/銀奈米長方體 、三極式電化學 、非酶葡萄糖感測器 |
英文關鍵詞: | Au@Ag nanocuboids, three-electrode electrochemical, non-enzymatic glucose sensor |
DOI URL: | http://doi.org/10.6345/NTNU202000676 |
論文種類: | 學術論文 |
相關次數: | 點閱:161 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著生活質量的改善,糖尿病的發病率也越來越普遍。葡萄糖的檢測對於糖尿病患者日常生活中的臨床管理至關重要。因此,高穩定性且反應快速的葡萄糖監測方法的開發一直是活躍的研究領域。近年來,研究人員一直致力於開發無酶電極材料,以替代市售的基於酶的電極。非酶葡萄糖感測器由於其諸如穩定性,簡單性,可再現性和低成本的優點而迅速發展。非酶電化學葡萄糖感測器不僅需要良好的電子轉移能力,而且還需要較大的有效面積來進行快速的氧化還原反應。在本篇論文中,我們測試了具有核-殼結構的Au@Ag奈米長方體及其他奈米材料對葡萄糖在pH 8.4時的電化學敏感性,並將其塗布於金電極上作為無酵素葡萄糖感測器。我們使用循環伏安法進行測試。在-0.2V–0.4V(vs Ag / AgCl)的掃描範圍內,可以獲得葡萄糖氧化的電流響應。葡萄糖的線性範圍是2 mM–9 mM。
As the quality of life improves, the incidence of diabetes is also becoming common. The detection of glucose is crucial for clinical management of diabetic patients in daily life. Thus, the development of reliable and rapid glucose monitoring methods has been an active research area. In recent years, the researchers have been focused on the development of enzyme-free electrode materials as an alternative to commercially available enzyme-based electrodes. Non-enzyme glucose sensors are rapidly being developed because of their advantages, such as stability, simplicity, reproducibility, and low cost. The non-enzyme electrochemical glucose sensor not only requires good electron transfer ability but also a large effective area for the rapid redox reaction. Here, we tested the electrochemical sensitivity of Au@Ag nanocuboids and other nanomaterialsto glucose at pH 8.4, which have a core-shell structure and used them coating on the gold electrode as an enzyme-free glucose sensor. We used cyclic voltammetrys for testing. In the scan range of -0.2V–0.4V (vs Ag / AgCl), the current response of glucose oxidation can be obtained. The linear range of glucose is 2 mM–9 mM.
1. Williams, R.; Karuranga, S.; Malanda, B.; Saeedi, P.; Basit, A.; Besançon, S.; Bommer, C.; Esteghamati, A.; Ogurtsova, K.; Zhang, P.; Colagiuri, S., Global and regional estimates and projections of diabetes-related health expenditure: Results from the International Diabetes Federation Diabetes Atlas, 9th edition. Diabetes Research and Clinical Practice 2020, 162, 108072.
2. 何敏夫, 臨床化學. 合記出版社 2002.
3. Krikstopaitis, K.; Kulys, J.; Tetianec, L., Bioelectrocatalytical glucose oxidation with phenoxazine modified glucose oxidase. Electrochemistry Communications 2004, 6 (4), 331-336.
4. Zhu, Z.; Garcia-Gancedo, L.; Flewitt, A. J.; Xie, H.; Moussy, F.; Milne, W. I., A critical review of glucose biosensors based on carbon nanomaterials: carbon nanotubes and graphene. Sensors (Basel) 2012, 12 (5), 5996-6022.
5. Hale, P. D.; Inagaki, T.; Karan, H. I.; Okamoto, Y.; Skotheim, T. A., A new class of amperometric biosensor incorporating a polymeric electron-transfer mediator. Journal of the American Chemical Society 1989, 111 (9), 3482-3484.
6. Tsai, T.-W.; Heckert, G.; Neves, L. F.; Tan, Y.; Kao, D.-Y.; Harrison, R. G.; Resasco, D. E.; Schmidtke, D. W., Adsorption of Glucose Oxidase onto Single-Walled Carbon Nanotubes and Its Application in Layer-By-Layer Biosensors. Analytical Chemistry 2009, 81 (19), 7917-7925.
7. Pletcher, D., Electrocatalysis: present and future. Journal of Applied Electrochemistry 1984, 14 (4), 403-415.
8. Toghill, K. E.; Compton, R. G., Electrochemical non-enzymatic glucose sensors: A perspective and an evaluation. International Journal of Electrochemical Science 2010, 5 (9), 1246-1301.
9. Hwang, D.-W.; Lee, S.; Seo, M.; Chung, T. D., Recent advances in electrochemical non-enzymatic glucose sensors – A review. Analytica Chimica Acta 2018, 1033, 1-34.
10. Burke, L. D., Premonolayer oxidation and its role in electrocatalysis. Electrochimica Acta 1994, 39 (11), 1841-1848.
11. Zhong, G.-X.; Zhang, W.-X.; Sun, Y.-M.; Wei, Y.-Q.; Lei, Y.; Peng, H.-P.; Liu, A.-L.; Chen, Y.-Z.; Lin, X.-H., A nonenzymatic amperometric glucose sensor based on three dimensional nanostructure gold electrode. Sensors and Actuators B: Chemical 2015, 212, 72-77.
12. Liu, W.; Wu, X.; Li, X., Gold nanorods on three-dimensional nickel foam: a non-enzymatic glucose sensor with enhanced electro-catalytic performance. RSC Advances 2017, 7 (58), 36744-36749.
13. Jiang, Y.; Li, Y.; Li, Y.; Li, S., A sensitive enzyme-free hydrogen peroxide sensor based on a chitosan–graphene quantum dot/silver nanocube nanocomposite modified electrode. Analytical Methods 2016, 8 (11), 2448-2455.
14. Ye, X.; Zheng, C.; Chen, J.; Gao, Y.; Murray, C. B., Using Binary Surfactant Mixtures To Simultaneously Improve the Dimensional Tunability and Monodispersity in the Seeded Growth of Gold Nanorods. Nano Letters 2013, 13 (2), 765-771.
15. Zhuo, X.; Zhu, X.; Li, Q.; Yang, Z.; Wang, J., Gold Nanobipyramid-Directed Growth of Length-Variable Silver Nanorods with Multipolar Plasmon Resonances. ACS Nano 2015, 9 (7), 7523-7535.
16. Lin, Z. W.; Tsao, Y. C.; Yang, M. Y.; Huang, M. H., Seed-Mediated Growth of Silver Nanocubes in Aqueous Solution with Tunable Size and Their Conversion to Au Nanocages with Efficient Photothermal Property. Chemistry 2016, 22 (7), 2326-32.
17. Zanello, P., Inorganic Electrochemistry: Theory, Practice and Application. The Royal Society of Chemistry 2003.
18. Cortie, M. B.; Liu, F.; Arnold, M. D.; Niidome, Y., Multimode Resonances in Silver Nanocuboids. Langmuir 2012, 28 (24), 9103-9112.
19. Hu, X.; Wang, X.; Ge, Z.; Zhang, L.; Zhou, Y.; Li, J.; Bu, L.; Wu, H.; Li, P.; Xu, W., Bimetallic plasmonic Au@Ag nanocuboids for rapid and sensitive detection of phthalate plasticizers with label-free surface-enhanced Raman spectroscopy. Analyst 2019, 144 (12), 3861-3869.