簡易檢索 / 詳目顯示

研究生: 王郁茜
Yu-Chien Wang
論文名稱: p53-hdm2-p14ARF調控路徑變異參與台灣肺癌形成之機制探討
Etiological association of alterations in p53-hdm2-p14ARF pathway with lung tumorigenesis in Taiwan
指導教授: 王憶卿
Wang, Yi-Ching
學位類別: 碩士
Master
系所名稱: 生命科學系
Department of Life Science
論文出版年: 2003
畢業學年度: 91
語文別: 中文
論文頁數: 94
中文關鍵詞: p53hdm2p14ARF選擇性轉錄編輯
論文種類: 學術論文
相關次數: 點閱:352下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 自民國七十三年以來,肺癌的死亡率在女性與男性分佔癌症死亡率的首位及第二位。由於抑癌基因變異的研究有助於對癌症形成機制的了解,而p53抑癌蛋白參與細胞週期與凋亡的調控,其變異在許多癌症均有發現,所以本研究首先偵測p53抑癌基因與蛋白在113個非小細胞肺癌樣本中變異的情形。研究結果顯示,p53抑癌基因突變的頻率為17%,但卻有48% p53蛋白過度表達的情形,因此,懷疑這些p53蛋白之異常表達,可能與上游調控蛋白,如p14ARF及hdm2發生變異有關。因此,本研究進一步分析台灣地區之非小細胞肺癌病人,其p53-hdm2-p14ARF調控路徑變異之機率與機制。利用免疫組織染色法分析 p14ARF及hdm2蛋白不表達的頻率,並以反轉錄-聚合酵素鏈反應分析組織細胞中p14ARF及hdm2 mRNA轉錄是否異常,以及偵測p14ARF基因啟動子高度甲基化、異質性喪失,等位基因缺失、及基因發生突變等頻率。本研究結果顯示:在台灣地區非小細胞肺癌病人中,hdm2蛋白不表達頻率為45% (43/95),mRNA低表達之頻率為41% (35/86),且發現轉錄編輯錯誤為導致hdm2基因變異之主要機制 (其頻率為63%,22/35);此外,由於Akt為hdm2上游之磷酸化酵素,與hdm2之活性、及由細胞質轉移至細胞核的能力有關,因此我們亦分析活化態Akt蛋白的表達情形,發現hdm2蛋白未表達且Akt蛋白亦未表達的比例達88% (38/43)。而在p14ARF方面,發現p14ARF蛋白不表達的頻率為34% (35/102),mRNA低表達頻率為31% (30/96),而啟動子高度甲基化頻率為30% (27/91),異質性喪失頻率為24% (19/78),等位基因缺失頻率為9% (5/55),基因突變頻率為2% (1/46);並推論啟動子高度甲基化為導致p14ARF基因變異之主要機制。另外,在38位 wild type p53蛋白過度表達的病人中,有92% (35/38) 病人其hdm2蛋白未表達,而p14ARF蛋白有表達,顯示這些病人p53蛋白的過度表達,的確與上游蛋白—hdm2及p14ARF的調控有關;且發現這些病人多為晚期 (21/35,60%) 且為SQ形式 (22/35,63%) 的肺癌病患。在存活率方面,發現p53蛋白過度表達的病人有較差的存活率 (P=0.013),故推測p53蛋白的過度表達,應可當作台灣地區肺癌病人的預後指標。
    本研究為首篇分析在wild type p53過度表達時,p53、hdm2、p14ARF三者間表達關係之研究;亦為首篇在肺癌中,發現hdm2 mRNA有轉錄編輯錯誤情形之研究。研究結果顯示p53-hdm2-p14ARF調控路徑變異在台灣地區肺癌形成過程中扮演重要的角色,並可作為肺癌之預後分子指標。

    Lung cancer is the leading and second cause of cancer deaths among women and men in Taiwan, respectively. However, the molecular mechanisms involved in lung tumorigenesis in Taiwan remain poorly defined. There is increasing evidence that alterations in tumor suppressor genes and oncogenes are common in many forms of human cancer including lung cancer. We found that p53 gene mutation frequency was 17% in resected non-small cell lung cancers (NSCLC). However, p53 protein overexpression frequency was 48%. To further identify the molecular basis for this p53 immunohistochemical abnormality, we performed a genetic and epigenetic study of the p53 upstream proteins, p14ARF and hdm2, in NSCLC patients. Specimens of resected NSCLC from 113 patients were recruited in this study. Protein expression and mRNA expression of p14ARF and hdm2 were examined by immunoshitochemistry and reverse transcriptase-polymerase chain reaction (RT-PCR), respectively. Methylation-based PCR assay was conducted to detect promoter methylation of the p14ARF gene. Loss of heterozygosity (LOH), homozygous deletion, and mutation of p14ARF gene were also examined. All data of p14ARF and hdm2 analyses were compared among patients with various clinicopathological parameters and with the p53 protein expression level. The data indicated that 45% and 41% lung cancer patients showed low or absent of hdm2 protein and mRNA expression, respectively. We also found that alternative splicing was the major mechanism which caused hdm2 gene alteration. In addition, we examined the frequency of protein expression of Akt kinase because Akt is known to associate with phosphorylation and nuclear localization of hdm2. The results indicated that the negative Akt kinase protein expression was correlated with negative hdm2 protein expression. With regard to p14ARF analyses, the data indicated that 34% and 31% lung cancer patients showed low or absent of p14ARF protein and mRNA expression, respectively. The frequency of p14ARF promoter hypermethylation, LOH, homozygous deletion, and mutation was 30%, 24%, 9% and 2%, respectively. We suggested that promoter hypermethylation was the major mechanism which caused p14ARF gene alteration. Note that 92% (35/38) patients with p53 overexpression showed absence or low expression of hdm2 protein and near overexpression of p14ARF protein. It indicated that the p53 overexpression was indeed induced by the dysregulation of the upstream proteins, hdm2 and p14ARF. Interestingly, most of the NSCLC patients with dysregulation of the p53-hdm2-p14ARF pathway were suffered late stage and SQ type of cancer. In addition, the patients with p53 overexpression had poor prognosis (P=0.013).
    The study was the first report which examines all possible alteration pathways in p53-hdm2-p14ARF gene/protein deregulation in the same series of NSCLC, and examines their relationship with the clinical data of NSCLC. In addition, it was also the first report on the alternative splicing of hdm2 mRNA in lung cancer. In conclusion, the alteration of p53-hdm2-p14ARF regulation pathway plays an important role in tumorigenesis of lung cancer in Taiwan, and could be potentially used as a molecular prognostic marker.

    壹、中文摘要----------------------------------------- 1 貳、英文摘要----------------------------------------- 3 參、文獻總論----------------------------------------- 5 一、引言 ------------------------------------------- 5 二、p53、hdm2與p14ARF三者之基因結構與功能------------ 7 (一)p53抑癌基因之結構與功能----------------------- 7 (二)hdm2基因之結構與功能-------------------------- 8 (三)p14ARF基因之結構與功能------------------------ 11 三、p53抑癌基因異常情形與癌症形成之相關性報導-------- 13 (一)p53抑癌基因/蛋白在其他癌症之異常情形---------- 13 (二)p53抑癌基因/蛋白在肺癌之異常情形-------------- 16 四、hdm2抑癌基因異常情形與癌症形成之相關性報導------- 17 (一)hdm2基因/蛋白在其他癌症之異常情形------------- 17 (二)hdm2基因/蛋白在肺癌之異常情形----------------- 18 五、p14ARF抑癌基因異常情形與癌症形成之相關性報導----- 19 (一)p14ARF基因/蛋白在其他癌症之異常情形----------- 19 (二)p14ARF基因/蛋白在肺癌之異常情形--------------- 20 肆、研究目的----------------------------------------- 22 伍、方法總論 --------------------------------------- 23 一、檢體來源及病歷資料------------------------------- 23 二、p53、hdm2、p14ARF、Akt蛋白表現分析--------------- 23 (一)免疫組織染色分析------------------------------ 23 (二)染色切片之判讀標準---------------------------- 24 三、p14ARF與hdm2基因mRNA分析------------------------- 26 (一)p14ARF與hdm2基因mRNA分析表現程度分析---------- 26 (二)hdm2基因mRNA選擇性轉錄編輯之分析-------------- 28 四、p14ARF基因啟動子高度甲基化分析------------------- 28 (一)DNA萃取--------------------------------------- 29 (二)BstU I-based PCR methylation assay------------ 29 (三)啟動子高度甲基化之判讀標準-------------------- 30 五、p14ARF基因座缺失分析----------------------------- 30 (一)Microdissection及DNA萃取---------------------- 30 (二)Chromosome 9p21基因異質性喪失分析------------- 31 (三)p14ARF等位基因缺失分析------------------------ 32 六、p53 cDNA、p14ARF基因突變分析--------------------- 33 (一)p53 cDNA定序分析------------------------------ 33 (二)p14ARF基因突變分析---------------------------- 33 七、統計分析----------------------------------------- 34 陸、結果 -------------------------------------------- 35 一、探討台灣地區肺癌病人p53基因/蛋白之變異情形------ 35 (一)p53基因突變頻譜分析及其與病歷資料相關性-------- 35 (二)p53蛋白變異頻率及其與病歷資料相關性------------ 36 二、探討台灣地區肺癌病人hdm2基因/蛋白之變異情形----- 38 (一)hdm2蛋白的表達情形與病歷資料相關性----------- 38 (二)hdm2 mRNA的表達情形、選擇性轉錄編輯與病歷資料 相關性--------------------------------------- 40 (三)hdm2 mRNA與蛋白表達間之相關性---------------- 41 (四)hdm2蛋白不表達與Akt蛋白表達與否之相關性------ 41 三、探討台灣地區肺癌病人p14ARF基因/蛋白之變異情形--- 43 (一)p14ARF蛋白的表達情形與病歷資料相關性--------- 43 (二)p14ARF mRNA的表達情形與病歷資料相關性-------- 43 (三)p14ARF 基因啟動子高度甲基化情形與病歷資料相關 性------------------------------------------- 44 (四)p14ARF mRNA、蛋白不表達與啟動子高度甲基化間之 相關性--------------------------------------- 44 (五)台灣地區肺癌病人p14ARF基因其他變異情形------- 45 四、探討台灣地區肺癌病人p53、hdm2及p14ARF三者蛋白表現 之相互關係-------------------------------------- 47 柒、討論 -------------------------------------------- 49 捌、參考文獻----------------------------------------- 59 玖、圖表--------------------------------------------- 72 拾、附錄

    Aguilar F, Harris CC, Sun T, Hollstein M, Cerutti P. Geographic variation of p53 mutational profile in nonmalignant human liver. Science. 264:1317-9, 1994.
    Aikawa, H., Sato, M., Fujimura, S., Takahashi, H., Endo, C., Sakurada, A., Chen, Y., Kondo, T., Tanita, T., Matsumura, Y., Saito, Y., and Sagawa, M. MDM2 expression is associated with progress of disease and WAF1 expression in resected lung cancer. Int. J. Mol. Med. 5: 631-633, 2000.
    Arora, S., Mathew, R., Mathur, M., Chattopadhayay, T. K., and Ralhan, R. Alterations in MDM2 expression in esophageal squamous cell carcinoma: relationship with p53 status. Pathol Oncol Res. 7: 203-208, 2001.
    Bains, M. S. Surgical treatment of lung cancer. Chest. 100: 826-837, 1991.
    Bar, J. K., Har?ozi?ska, A., Popiela, A., and Noga, L. Expression and mutation of p53 in tumor effusion cells of patients with ovarian carcinoma: response to cisplatin-based chemotherapy. Tumour Biol. 22: 83-91, 2001.
    Barak, Y., Gottlieb, E., Juven-Gershon, T., and Oren, M. Regulation of mdm2 expression by p53: alternative promoters produce transcripts with nonidentical translation potential. Genes Dev. 8: 1739-1749, 1994.
    Barak, Y., Juven, T., Haffner, R., and Oren, M. mdm2 expression is induced by wild type p53 activity. EMBO J. 12: 461-468, 1993.
    Bartel, F., Meye, A., Wurl, P., Kappler, M., Bache, M., Lautenschlager, C., Grunbaum, U., Schmidt, H., and Taubert, H. Amplification of the MDM2 gene, but not expression of splice variants of MDM2 MRNA, is associated with prognosis in soft tissue sarcoma. International Journal of Cancer. 95: 168-175, 2001.
    Biramijamal, F., Allameh, A., Mirbod, P., Groene, H. J., Koomagi, R., and Hollstein, M. Unusual profile and high prevalence of p53 mutations in esophageal squamous cell carcinomas from northern Iran. Cancer Res. 61: 3119-3123, 2001.
    Blondal, J. A. and Benchimol, S. The role of p53 in tumor progression. Semin Cancer Biol. 5: 177-186, 1994.
    Bossy-Wetzel, E. and Green, D. R. Apoptosis: checkpoint at the mitochondrial frontier. Mutat Res. 434: 243-251, 1999.
    Bradley, G., Irish, J., MacMillan, C., Mancer, K., Witterick, I., Hartwick, W., Gullane, P., Kamel-Reid, S., and Benchimol, S. Abnormalities of the ARF-p53 pathway in oral squamous cell carcinoma. Oncogene. 20: 654-658, 2001.
    Brenner, A. J., Paladugu, A., Wang, H., Olopade, O. I., Dreyling, M. H., and Aldaz, C. M. Preferential loss of expression of p16(INK4a) rather than p19(ARF) in breast cancer. Clin Cancer Res. 2: 1993-1998, 1996.
    Broll, R., Stark, A., Windhovel, U., Best, R., Strik, M. W., Schimmelpenning, H., Schwandner, O., Kujath, P., Bruch, H. P., and Duchrow, M. Expression of p53 and mdm2 mRNA and protein in colorectal carcinomas. Eur J Cancer. 35: 1083-1088, 1999.
    Brown, D. R., Thomas, C. A., and Deb, S. P. The human oncoprotein MDM2 arrests the cell cycle: elimination of its cell-cycle-inhibitory function induces tumorigenesis. EMBO J. 17: 2513-2525, 1998.
    Chellappan, S. P., Hiebert, S., Mudryj, M., Horowitz, J. M., and Nevins, J. R. The E2F transcription factor is a cellular target for the RB protein. Cell. 65: 1053-1061, 1991.
    Chen, J. T., Chen, Y. C., Wang, Y. C., Tseng, R. C., and Chen, C. Y. Alterations of the p16(ink4a) gene in resected nonsmall cell lung tumors and exfoliated cells within sputum. Int J Cancer. 98: 724-731, 2002.
    Chen, R., Wei, L., and Chen, R. L. Lung cancer mortality update and prevalence of smoking among copper miners and smelters. Scand J Work Environ Health. 21: 513-516, 1995.
    Chern, H. D., Becich, M. J., Persad, R. A., Romkes, M., Smith, P., Collins, C., Li, Y. H., and Branch, R. A. Clonal analysis of human recurrent superficial bladder cancer by immunohistochemistry of P53 and retinoblastoma proteins. J Urol. 156: 1846-1849, 1996.
    Chino, O., Kijima, H., Shimada, H., Nishi, T., Tanaka, H., Kise, Y., Kenmochi, T., Himeno, S., Machimura, T., Tanaka, M., Inokuchi, S., Tajima, T., Osamura, R. Y., and Makuuchi, H. Accumulation of p53 in esophageal squamous cell carcinoma. Int J Mol Med. 8: 359-363, 2001.
    Cong, F., Zou, X., Hinrichs, K., Calame, K., and Goff, S. P. Inhibition of v-Abl transformation by p53 and p19ARF. Oncogene. 18: 7731-7739, 1999.
    Cripps, K. J., Purdie, C. A., Carder, P. J., White, S., Komine, K., Bird, C. C., and Wyllie, A. H. A study of stabilisation of p53 protein versus point mutation in colorectal carcinoma. Oncogene. 9: 2739-2743, 1994.
    Davidoff, A. M., Herndon, J. E., 2nd, Glover, N. S., Kerns, B. J., Pence, J. C., Iglehart, J. D., and Marks, J. R. Relation between p53 overexpression and established prognostic factors in breast cancer. Surgery. 110: 259-264, 1991.
    de Stanchina, E., McCurrach, M. E., Zindy, F., Shieh, S. Y., Ferbeyre, G., Samuelson, A. V., Prives, C., Roussel, M. F., Sherr, C. J., and Lowe, S. W. E1A signaling to p53 involves the p19(ARF) tumor suppressor. Genes Dev. 12: 2434-2442, 1998.
    Dinse, G. E. and Lagakos, S. W. Nonparametric estimation of lifetime and disease onset distributions from incomplete observations. Biometrics. 38: 921-932, 1982.
    Dominguez, G., Silva, J., Silva, J. M., Garcia, J. M., Larrondo, F. J., Vargas, J., Sanfrutos, L., Provencio, M., Espana, P., and Bonilla, F. Different expression of P14ARF defines two groups of breast carcinomas in terms of TP73 expression and TP53 mutational status. Genes Chromosomes Cancer. 31: 99-106, 2001.
    Donehower, L. A., Harvey, M., Slagle, B. L., McArthur, M. J., Montgomery, C. A., Jr., Butel, J. S., and Bradley, A. Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours. Nature. 356: 215-221, 1992.
    el-Deiry, W. S., Harper, J. W., O'Connor, P. M., Velculescu, V. E., Canman, C. E., Jackman, J., Pietenpol, J. A., Burrell, M., Hill, D. E., Wang, Y. WAF1/CIP1 is induced in p53-mediated G1 arrest and apoptosis. Cancer Res. 54: 1169-1174, 1994.
    Endo, K., Ueda, T., Ohta, T., and Terada, T. Protein expression of MDM2 and its clinicopathological relationships in human hepatocellular carcinoma. Liver. 20: 209-215, 2000.
    Esteller, M., Gonzalez, S., Risques, R. A., Marcuello, E., Mangues, R., Germa, J. R., Herman, J. G., Capella, G., and Peinado, M. A. K-ras and p16 aberrations confer poor prognosis in human colorectal cancer. J Clin Oncol. 19: 299-304, 2001.
    Esteller, M., Tortola, S., Toyota, M., Capella, G., Peinado, M. A., Baylin, S. B., and Herman, J. G. Hypermethylation-associated inactivation of p14(ARF) is independent of p16(INK4a) methylation and p53 mutational status. Cancer Res. 60: 129-133, 2000.
    Esteller M, Cordon-Cardo C, Corn PG, Meltzer SJ, Pohar KS, Watkins DN, Capella G, Peinado MA, Matias-Guiu X, Prat J, Baylin SB, Herman JG. p14ARF silencing by promoter hypermethylation mediates abnormal intracellular localization of MDM2. Cancer Res. 61: 2816-21, 2001.
    Eymin, B., Gazzeri, S., Brambilla, C., and Brambilla, E. Mdm2 overexpression and p14(ARF) inactivation are two mutually exclusive events in primary human lung tumors. Oncogene. 21: 2750-2761, 2002.
    Fakharzadeh, S. S., Trusko, S. P., and George, D. L. Tumorigenic potential associated with enhanced expression of a gene that is amplified in a mouse tumor cell line. EMBO J. 10: 1565-1569, 1991.
    Fallows, S., Price, J., Atkinson, R. J., Johnston, P. G., Hickey, I., and Russell, S. E. P53 mutation does not affect prognosis in ovarian epithelial malignancies. J Pathol. 194: 68-75, 2001.
    Flejou, J. F., Gratio, V., Muzeau, F., and Hamelin, R. p53 abnormalities in adenocarcinoma of the gastric cardia and antrum. Mol Pathol. 52: 263-268, 1999.
    Freedman, D. A., Epstein, C. B., Roth, J. C., and Levine, A. J. A genetic approach to mapping the p53 binding site in the MDM2 protein. Mol Med. 3: 248-259, 1997.
    Fuchs, S. Y., Adler, V., Buschmann, T., Wu, X., and Ronai, Z. Mdm2 association with p53 targets its ubiquitination. Oncogene. 17: 2543-2547, 1998.
    Fujii, H., Zhou, W., and Gabrielson, E. Detection of frequent allelic loss of 6q23-q25.2 in microdissected human breast cancer tissues. Genes Chromosomes Cancer. 16: 35-39, 1996.
    Gao, J. P., Uchida, T., Wang, C., Jiang, S. X., Matsumoto, K., Satoh, T., Minei, S., Soh, S., Kameya, T., and Baba, S. Relationship between p53 gene mutation and protein expression: clinical significance in transitional cell carcinoma of the bladder. Int J Oncol. 16: 469-475, 2000.
    Gao, Y. T. Risk factors for lung cancer among nonsmokers with emphasis on lifestyle factors. Lung Cancer. 14: S39-45, 1996.
    Gaur, D., Arora, S., Mathur, M., Nath, N., Chattopadhaya, T. K., and Ralhan, R. High prevalence of p53 gene alterations and protein overexpression in human esophageal cancer: correlation with dietary risk factors in India. Clin Cancer Res. 3: 2129-2136, 1997.
    Gazzeri, S., Della Valle, V., Chaussade, L., Brambilla, C., Larsen, C. J., and Brambilla, E. The human p19ARF protein encoded by the beta transcript of the p16INK4a gene is frequently lost in small cell lung cancer. Cancer Res. 58: 3926-3931, 1998.
    Gemba, K., Ueoka, H., Kiura, K., Tabata, M., and Harada, M. Immunohistochemical detection of mutant p53 protein in small-cell lung cancer: relationship to treatment outcome. Lung Cancer. 29: 23-31, 2000.
    Ger, L. P., Hsu, W. L., Chen, K. T., and Chen, C. J. Risk factors of lung cancer by histological category in Taiwan. Anticancer Res. 13: 1491-1500, 1993.
    Gorgoulis, V. G., Zacharatos, P., Kotsinas, A., Mariatos, G., Liloglou, T., Vogiatzi, T., Foukas, P., Rassidakis, G., Garinis, G., Ioannides, T., Zoumpourlis, V., Bramis, J., Michail, P. O., Asimacopoulos, P. J., Field, J. K., and Kittas, C. Altered expression of the cell cycle regulatory molecules pRb, p53 and MDM2 exert a synergetic effect on tumor growth and chromosomal instability in non-small cell lung carcinomas (NSCLCs). Mol Med. 6: 208-237, 2000.
    Gunther, T., Schneider-Stock, R., Hackel, C., Kasper, H. U., Pross, M., Hackelsberger, A., Lippert, H., and Roessner, A. Mdm2 gene amplification in gastric cancer correlation with expression of Mdm2 protein and p53 alterations. Mod Pathol.13: 621-626, 2000.
    Hainaut, P. and Pfeifer, G. P. Patterns of p53 G-->T transversions in lung cancers reflect the primary mutagenic signature of DNA-damage by tobacco smoke. Carcinogenesis. 22: 367-374, 2001.
    Harloziska, A., Bar, J., and Montenarh, M. Analysis of the immunoreactivity of three anti-p53 antibodies and estimation of the relations between p53 status and MDM2 protein expression in ovarian carcinomas. Anticancer Res. 20: 1049-1056, 2000.
    Hashiguchi, Y., Tsuda, H., Yamamoto, K., Inoue, T., Ishiko, O., and Ogita, S. Combined analysis of p53 and RB pathways in epithelial ovarian cancer. Hum Pathol. 32: 988-996, 2001.
    Hashimoto, T., Tokuchi, Y., Hayashi, M., Kobayashi, Y., Nishida, K., Hayashi, S., Ishikawa, Y., Tsuchiya, S., Nakagawa, K., Hayashi, J., and Tsuchiya, E. p53 null mutations undetected by immunohistochemical staining predict a poor outcome with early-stage non-small cell lung carcinomas. Cancer Res. 59: 5572-5577, 1999.
    Hermeking, H., Lengauer, C., Polyak, K., He, T. C., Zhang, L., Thiagalingam, S., Kinzler, K. W., and Vogelstein, B. 14-3-3 sigma is a p53-regulated inhibitor of G2/M progression. Mol Cell. 1: 3-11, 1997.
    Hooper, M. L. The role of the p53 and Rb-1 genes in cancer, development and apoptosis. J Cell Sci. - Suppl. 18: 13-17, 1994.
    Hori, M., Shimazaki, J., Inagawa, S., and Itabashi, M. Alternatively spliced MDM2 transcripts in human breast cancer in relation to tumor necrosis and lymph node involvement. Pathol Int. 50: 786-792, 2000.
    Horne, G. M., Anderson, J. J., Tiniakos, D. G., McIntosh, G. G., Thomas, M. D., Angus, B., Henry, J. A., Lennard, T. W., and Horne, C. H. p53 protein as a prognostic indicator in breast carcinoma: a comparison of four antibodies for immunohistochemistry. Br J Cancer. 73: 29-35, 1996.
    Hsu, C. H., Yang, S. A., Wang, J. Y., Yu, H. S., and Lin, S. R. Mutational spectrum of p53 gene in arsenic-related skin cancers from the blackfoot disease endemic area of Taiwan. Br J Cancer. 80: 1080-1086, 1999.
    Iida, S., Akiyama, Y., Nakajima, T., Ichikawa, W., Nihei, Z., Sugihara, K., and Yuasa, Y. Alterations and hypermethylation of the p14(ARF) gene in gastric cancer. Int J Cancer. 87: 654-658, 2000.
    Jassem, E., Ramlau, R., Dziadziuszko, R., Szymanowska, A., Jakobkiewicz, J., Lamperska, K., Kobierska, G., Skokowski, J., Dyszkiewicz, W., Mackiewicz, A., Zylicz, M., and Jassem, J. P53 and P16 gene mutations in non-small cell lung cancer. Pneumonol Alergol Pol. 70: 64-70, 2002.
    Jin, M., Piao, Z., Kim, N. G., Park, C., Shin, E. C., Park, J. H., Jung, H. J., Kim, C. G., and Kim, H. p16 is a major inactivation target in hepatocellular carcinoma. Cancer. 89: 60-68, 2000.
    Joazeiro, C. A. and Weissman, A. M. RING finger proteins: mediators of ubiquitin ligase activity. Cell. 102: 549-552, 2000.
    Jones, S. N., Hancock, A. R., Vogel, H., Donehower, L. A., and Bradley, A. Overexpression of Mdm2 in mice reveals a p53-independent role for Mdm2 in tumorigenesis. Proc Natl Acad Sci U S A. 95: 15608-15612, 1998.
    Jost, C. A., Marin, M. C., and Kaelin, W. G., Jr. p73 is a simian p53-related protein that can induce apoptosis. Nature. 389: 191-194, 1997.
    Kamijo, T., Zindy, F., Roussel, M. F., Quelle, D. E., Downing, J. R., Ashmun, R. A., Grosveld, G., and Sherr, C. J. Tumor suppression at the mouse INK4a locus mediated by the alternative reading frame product p19ARF. Cell. 91: 649-659, 1997.
    Kandioler-Eckersberger, D., Ludwig, C., Rudas, M., Kappel, S., Janschek, E., Wenzel, C., Schlagbauer-Wadl, H., Mittlbock, M., Gnant, M., Steger, G., and Jakesz, R. TP53 mutation and p53 overexpression for prediction of response to neoadjuvant treatment in breast cancer patients. Clin Cancer Res. 6: 50-56, 2000.
    Kaserer, K., Schmaus, J., Bethge, U., Migschitz, B., Fasching, S., Walch, A., Herbst, F., Teleky, B., and Wrba, F. Staining patterns of p53 immunohistochemistry and their biological significance in colorectal cancer. J Pathol. 190: 450-456, 2000.
    Kasper, H. U., Schneider-Stock, R., Mellin, W., Gunther, T., and Roessner, A. P53-protein accumulation and MDM2-protein overexpression in gastric carcinomas. No apparent correlation with survival. Pathol Res Pract. 195: 815-820, 1999.
    Kastan, M. B., Onyekwere, O., Sidransky, D., Vogelstein, B., and Craig, R. W. Participation of p53 protein in the cellular response to DNA damage. Cancer Res. 51: 6304-6311, 1991.
    Keshet, I., Yisraeli, J., and Cedar, H. Effect of regional DNA methylation on gene expression. Proc Natl Acad Sci U S A. 82: 2560-2564, 1985.
    Ko, J. L., Cheng, Y. W., Chang, S. L., Su, J. M., Chen, C. Y., and Lee, H. MDM2 mRNA expression is a favorable prognostic factor in non-small-cell lung cancer. Int J Cancer. 89: 265-270, 2000.
    Kobayashi, M., Kawashima, A., Mai, M., and Ooi, A. Analysis of chromosome 17p13 (p53 locus) alterations in gastric carcinoma cells by dual-color fluorescence in situ hybridization. Am J Pathol. 149: 1575-1584, 1996.
    Koga, T., Hashimoto, S., Sugio, K., Yoshino, I., Nakagawa, K., Yonemitsu, Y., Sugimachi, K., and Sueishi, K. Heterogeneous distribution of P53 immunoreactivity in human lung adenocarcinoma correlates with MDM2 protein expression, rather than with P53 gene mutation. Int J Cancer. 95: 232-239, 2001.
    Koo, L. C. and Ho, J. H. Worldwide epidemiological patterns of lung cancer in nonsmokers. Int J Epidemiol. 19: S14-23, 1990.
    Korshunov, A. and Golanov, A. Immunohistochemical analysis of p18INK4C and p14ARF protein expression in 117 oligodendrogliomas: correlation with tumor grade and clinical outcome. Arch Pathol Lab Med. 126: 42-48, 2002.
    Kraus, A., Neff, F., Behn, M., Schuermann, M., Muenkel, K., and Schlegel, J. Expression of alternatively spliced mdm2 transcripts correlates with stabilized wild-type p53 protein in human glioblastoma cells. Int J Cancer. 80: 930-934, 1999.
    Kumar, R., Smeds, J., Lundh Rozell, B., and Hemminki, K. Loss of heterozygosity at chromosome 9p21 (INK4-p14ARF locus): homozygous deletions and mutations in the p16 and p14ARF genes in sporadic primary melanomas. Melanoma Res. 9: 138-147, 1999.
    Lane, D. P. Cancer. p53, guardian of the genome. Nature. 358: 15-16, 1992.
    Lane, D. P. and Crawford, L. V. T antigen is bound to a host protein in SV40-transformed cells. Nature. 278: 261-263, 1979.
    Lee, S. H., Kim, H. S., Park, W. S., Kim, S. Y., Lee, K. Y., Kim, S. H., Lee, J. Y., and Yoo, N. J. Non-small cell lung cancers frequently express phosphorylated Akt; an immunohistochemical study. APMIS. 110: 587-592, 2002.
    Levine, A. J., Wu, M. C., Chang, A., Silver, A., Attiyeh, E. F., Lin, J., and Epstein, C. B. The spectrum of mutations at the p53 locus. Evidence for tissue-specific mutagenesis, selection of mutant alleles, and a "gain of function" phenotype. Ann N Y Acad Sci. 768: 111-128, 1995.
    Li, S., Liu, H., and Wang, D. Detection of the p53 protein accumulation and p53 gene mutation in squamous cell carcinoma of the lung. Zhonghua Bing Li Xue Za Zhi. 27: 123-126, 1998.
    Liang, J. T., Huang, K. C., Cheng, Y. M., Hsu, H. C., Cheng, A. L., Hsu, C. H., Yeh, K. H., Wang, S. M., and Chang, K. J. P53 overexpression predicts poor chemosensitivity to high-dose 5-fluorouracil plus leucovorin chemotherapy for stage IV colorectal cancers after palliative bowel resection. Int J Cancer. 97: 451-457, 2002.
    Lukas, J., Gao, D. Q., Keshmeshian, M., Wen, W. H., Tsao-Wei, D., Rosenberg, S., and Press, M. F. Alternative and aberrant messenger RNA splicing of the mdm2 oncogene in invasive breast cancer. Cancer Res. 61: 3212-3219, 2001.
    Lundgren, K., Montes de Oca Luna, R., McNeill, Y. B., Emerick, E. P., Spencer, B., Barfield, C. R., Lozano, G., Rosenberg, M. P., and Finlay, C. A. Targeted expression of MDM2 uncouples S phase from mitosis and inhibits mammary gland development independent of p53. Genes Dev. 11: 714-725, 1997.
    Marchetti, A., Buttitta, F., Girlando, S., Dalla Palma, P., Pellegrini, S., Fina, P., Doglioni, C., Bevilacqua, G., and Barbareschi, M. mdm2 gene alterations and mdm2 protein expression in breast carcinomas. J Pathol. 175: 31-38, 1995.
    Matsumoto, R., Tada, M., Nozaki, M., Zhang, C. L., Sawamura, Y., and Abe, H. Short alternative splice transcripts of the mdm2 oncogene correlate to malignancy in human astrocytic neoplasms. Cancer Res. 58: 609-613, 1998.
    Mayo, L. D. and Donner, D. B. A phosphatidylinositol 3-kinase/Akt pathway promotes translocation of Mdm2 from the cytoplasm to the nucleus. Proc Natl Acad Sci U S A. 98: 11598-11603., 2001.
    Momand, J., Zambetti, G. P., Olson, D. C., George, D., and Levine, A. J. The mdm-2 oncogene product forms a complex with the p53 protein and inhibits p53-mediated transactivation. Cell. 69: 1237-1245., 1992.
    Mountain, C. F. A new international staging system for lung cancer. Chest 89: 1986.
    Nakamura, M., Watanabe, T., Klangby, U., Asker, C., Wiman, K., Yonekawa, Y., Kleihues, P., and Ohgaki, H. p14ARF deletion and methylation in genetic pathways to glioblastomas. Brain Pathol. 11: 159-168, 2001.
    Nakano, K. and Vousden, K. H. PUMA, a novel proapoptotic gene, is induced by p53. Mol Cell. 7: 683-694, 2001.
    Ng, I. O., Chung, L. P., Tsang, S. W., Lam, C. L., Lai, E. C., Fan, S. T., and Ng, M. p53 gene mutation spectrum in hepatocellular carcinomas in Hong Kong Chinese. Oncogene. 9: 985-990, 1994.
    Nicholson, S. A., Okby, N. T., Khan, M. A., Welsh, J. A., McMenamin, M. G., Travis, W. D., Jett, J. R., Tazelaar, H. D., Trastek, V., Pairolero, P. C., Corn, P. G., Herman, J. G., Liotta, L. A., Caporaso, N. E., and Harris, C. C. Alterations of p14ARF, p53, and p73 genes involved in the E2F-1-mediated apoptotic pathways in non-small cell lung carcinoma. Cancer Res. 61: 5636-5643, 2001.
    Norberg, T., Klaar, S., Karf, G., Nordgren, H., Holmberg, L., and Bergh, J. Increased p53 mutation frequency during tumor progression--results from a breast cancer cohort. Cancer Res. 61: 8317-8321, 2001.
    Oda, E., Ohki, R., Murasawa, H., Nemoto, J., Shibue, T., Yamashita, T., Tokino, T., Taniguchi, T., and Tanaka, N. Noxa, a BH3-only member of the Bcl-2 family and candidate mediator of p53-induced apoptosis. Science. 288: 1053-1058, 2000.
    Oda, K., Arakawa, H., Tanaka, T., Matsuda, K., Tanikawa, C., Mori, T., Nishimori, H., Tamai, K., Tokino, T., Nakamura, Y., and Taya, Y. p53AIP1, a potential mediator of p53-dependent apoptosis, and its regulation by Ser-46-phosphorylated p53. Cell. 102: 849-862, 2000.
    Oliner, J. D., Kinzler, K. W., Meltzer, P. S., George, D. L., and Vogelstein, B. Amplification of a gene encoding a p53-associated protein in human sarcomas. Nature 358: 80-83., 1992.
    Olson, D. C., Marechal, V., Momand, J., Chen, J., Romocki, C., and Levine, A. J. Identification and characterization of multiple mdm-2 proteins and mdm-2-p53 protein complexes. Oncogene. 8: 2353-2360, 1993.
    Oren, M. The p53 cellular tumor antigen: gene structure, expression and protein properties. Biochim Biophys Acta. 823: 67-78, 1985.
    Oren, M. and Prives, C. p53: upstream, downstream and off stream. Review of the 8th p53 workshop (Dundee, July 5-9, 1996). Biochim Biophys Acta. 3: 9, 1996.
    Paradiso, A., Ranieri, G., Simone, G., Silvestris, N., Costa, A., De Lena, M., Leone, A., Vallejo, C., and Lacava, J. mdm2-p53 Interaction: lack of correlation with the response to 5-fluorouracil in advanced colorectal cancer. Oncology. 62: 278-285, 2002.
    Park, M. J., Shimizu, K., Nakano, T., Park, Y. B., Kohno, T., Tani, M., and Yokota, J. Pathogenetic and biologic significance of TP14ARF alterations in nonsmall cell lung carcinoma. Cancer Genet Cytogenet. 141: 5-13, 2003.
    Peng, C. Y., Chen, T. C., Hung, S. P., Chen, M. F., Yeh, C. T., Tsai, S. L., Chu, C. M., and Liaw, Y. F. Genetic alterations of INK4alpha/ARF locus and p53 in human hepatocellular carcinoma. Anticancer Res. 22: 1265-1271, 2002.
    Pfister, C., Larue, H., Moore, L., Lacombe, L., Veilleux, C., Tetu, B., Meyer, F., and Fradet, Y. Tumorigenic pathways in low-stage bladder cancer based on p53, MDM2 and p21 phenotypes. Int J Cancer. 89: 100-104, 2000.
    Pfister, C., Moore, L., Allard, P., Larue, H., Lacombe, L., Tetu, B., Meyer, F., and Fradet, Y. Predictive value of cell cycle markers p53, MDM2, p21, and Ki-67 in superficial bladder tumor recurrence. Clin Cancer Res. 5: 4079-4084, 1999.
    Pindzola, J. A., Kovatich, A. J., and Bibbo, M. p53 immunohistochemistry for distinguishing reactive mesothelium from low grade ovarian carcinoma. Acta Cytol. 44: 31-36, 2000.
    Pinyol, M., Hernandez, L., Martinez, A., Cobo, F., Hernandez, S., Bea, S., Lopez-Guillermo, A., Nayach, I., Palacin, A., Nadal, A., Fernandez, P. L., Montserrat, E., Cardesa, A., and Campo, E. INK4a/ARF locus alterations in human non-Hodgkin's lymphomas mainly occur in tumors with wild-type p53 gene. Am J Pathol.156: 1987-1996, 2000.
    Pomerantz, J., Schreiber-Agus, N., Liegeois, N. J., Silverman, A., Alland, L., Chin, L., Potes, J., Chen, K., Orlow, I., Lee, H. W., Cordon-Cardo, C., and DePinho, R. A. The Ink4a tumor suppressor gene product, p19Arf, interacts with MDM2 and neutralizes MDM2's inhibition of p53. Cell. 92: 713-723, 1998.
    Qin, L. F., Ng, I. O., Fan, S. T., and Ng, M. p21/WAF1, p53 and PCNA expression and p53 mutation status in hepatocellular carcinoma. Int J Cancer. 79: 424-428, 1998.
    Quelle, D. E., Zindy, F., Ashmun, R. A., and Sherr, C. J. Alternative reading frames of the INK4a tumor suppressor gene encode two unrelated proteins capable of inducing cell cycle arrest. Cell. 83: 993-1000, 1995.
    Ralhan, R., Sandhya, A., Meera, M., Bohdan, W., and Nootan, S. K. Induction of MDM2-P2 transcripts correlates with stabilized wild-type p53 in betel- and tobacco-related human oral cancer. Am J Pathol. 157: 587-596, 2000.
    Reed, J. C. Cytochrome c: can't live with it--can't live without it. Cell. 91: 559-562, 1997.
    Rizos, H., Darmanian, A. P., Mann, G. J., and Kefford, R. F. Two arginine rich domains in the p14ARF tumour suppressor mediate nucleolar localization. Oncogene. 19: 2978-2985, 2000.
    Ryan, A., Al-Jehani, R. M., Mulligan, K. T., and Jacobs, I. J. No evidence exists for methylation inactivation of the p16 tumor suppressor gene in ovarian carcinogenesis. Gynecol Oncol. 68: 14-17, 1998.
    Ryu, J. W., Lee, M. C., and Jang, W. C. Detecting p53 gene mutation of breast cancer and defining differences between silver staining PCR-SSCP and immunohistochemical staining. J Korean Med Sci. 15: 73-77, 2000.
    Sanchez-Cespedes, M., Reed, A. L., Buta, M., Wu, L., Westra, W. H., Herman, J. G., Yang, S. C., Jen, J., and Sidransky, D. Inactivation of the INK4A/ARF locus frequently coexists with TP53 mutations in non-small cell lung cancer. Oncogene. 18: 5843-5849, 1999.
    Sano, T., Hikino, T., Xue, Q., Saito, T., Kashiwabara, K., Oyama, T., and Nakajima, T. Immunohistochemical inactivation of p14ARF concomitant with MDM2 overexpression inversely correlates with p53 overexpression in oral squamous cell carcinoma. Pathol Int. 50: 709-716, 2000.
    Sarkar, S., Julicher, K. P., Burger, M. S., Della Valle, V., Larsen, C. J., Yeager, T. R., Grossman, T. B., Nickells, R. W., Protzel, C., Jarrard, D. F., and Reznikoff, C. A. Different combinations of genetic/epigenetic alterations inactivate the p53 and pRb pathways in invasive human bladder cancers. Cancer Res. 60: 3862-3871, 2000.
    Schmutte, C., Yang, A. S., Beart, R. W., and Jones, P. A. Base excision repair of U:G mismatches at a mutational hotspot in the p53 gene is more efficient than base excision repair of T:G mismatches in extracts of human colon tumors. Cancer Res. 55: 3742-3746, 1995.
    Schneider, P. M., Praeuer, H. W., Stoeltzing, O., Boehm, J., Manning, J., Metzger, R., Fink, U., Wegerer, S., Hoelscher, A. H., and Roth, J. A. Multiple molecular marker testing (p53, C-Ki-ras, c-erbB-2) improves estimation of prognosis in potentially curative resected non-small cell lung cancer. Br J Cancer. 83: 473-479, 2000.
    Serrano, M., Hannon, G. J., and Beach, D. A new regulatory motif in cell-cycle control causing specific inhibition of cyclin D/CDK4. Nature. 366: 704-707, 1993.
    Serrano, M., Lin, A. W., McCurrach, M. E., Beach, D., and Lowe, S. W. Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell. 88: 593-602, 1997.
    Shahnavaz, S. A., Bradley, G., Regezi, J. A., Thakker, N., Gao, L., Hogg, D., and Jordan, R. C. Patterns of CDKN2A gene loss in sequential oral epithelial dysplasias and carcinomas. Cancer Res. 61: 2371-2375, 2001.
    Shiao, Y. H., Palli, D., Caporaso, N. E., Alvord, W. G., Amorosi, A., Nesi, G., Saieva, C., Masala, G., Fraumeni, J. F., Jr., and Rice, J. M. Genetic and immunohistochemical analyses of p53 independently predict regional metastasis of gastric cancers. Cancer Epidemiol Biomarkers Prev. 9: 631-633, 2000.
    Shieh, S. Y., Ikeda, M., Taya, Y., and Prives, C. DNA damage-induced phosphorylation of p53 alleviates inhibition by MDM2. Cell 91: 325-334., 1997.
    Shields, P. G., Xu, G. X., Blot, W. J., Fraumeni, J. F., Jr., Trivers, G. E., Pellizzari, E. D., Qu, Y. H., Gao, Y. T., and Harris, C. C. Mutagens from heated Chinese and U.S. cooking oils. J Natl Cancer Inst. 87: 836-841, 1995.
    Shimizu, K., Goldfarb, M., Suard, Y., Perucho, M., Li, Y., Kamata, T., Feramisco, J., Stavnezer, E., Fogh, J., and Wigler, M. H. Three human transforming genes are related to the viral ras oncogenes. Proc Natl Acad Sci U S A. 80: 2112-2116., 1983.
    Sigalas, I., Calvert, A. H., Anderson, J. J., Neal, D. E., and Lunec, J. Alternatively spliced mdm2 transcripts with loss of p53 binding domain sequences: transforming ability and frequent detection in human cancer. Nat Med. 2: 912-917, 1996.
    Silva, J., Dominguez, G., Silva, J. M., Garcia, J. M., Gallego, I., Corbacho, C., Provencio, M., Espana, P., and Bonilla, F. Analysis of genetic and epigenetic processes that influence p14ARF expression in breast cancer. Oncogene. 20: 4586-4590, 2001.
    Simon, M., Park, T. W., Koster, G., Mahlberg, R., Hackenbroch, M., Bostrom, J., Loning, T., and Schramm, J. Alterations of INK4a(p16-p14ARF)/INK4b(p15) expression and telomerase activation in meningioma progression. J Neurooncol. 55: 149-158, 2001.
    Sparkes, R. S., Murphree, A. L., Lingua, R. W., Sparkes, M. C., Field, L. L., Funderburk, S. J., and Benedict, W. F. Gene for hereditary retinoblastoma assigned to human chromosome 13 by linkage to esterase D. Science 219: 971-973., 1983.
    Stommel, J. M., Marchenko, N. D., Jimenez, G. S., Moll, U. M., Hope, T. J., and Wahl, G. M. A leucine-rich nuclear export signal in the p53 tetramerization domain: regulation of subcellular localization and p53 activity by NES masking. EMBO J. 18: 1660-1672, 1999.
    Sugio, K., Kishimoto, Y., Virmani, A. K., Hung, J. Y., and Gazdar, A. F. K-ras mutations are a relatively late event in the pathogenesis of lung carcinomas. Cancer Res. 54: 5811-5815, 1994.
    Tamborini, E., Della Torre, G., Lavarino, C., Azzarelli, A., Carpinelli, P., Pierotti, M. A., and Pilotti, S. Analysis of the molecular species generated by MDM2 gene amplification in liposarcomas. Int J Cancer. 92: 790-796, 2001.
    Tannapfel, A., Busse, C., Weinans, L., Benicke, M., Katalinic, A., Geissler, F., Hauss, J., and Wittekind, C. INK4a-ARF alterations and p53 mutations in hepatocellular carcinomas. Oncogene. 20: 7104-7109, 2001.
    Taubert, H., Koehler, T., Meye, A., Bartel, F., Lautenschlager, C., Borchert, S., Bache, M., Schmidt, H., and Wurl, P. mdm2 mRNA level is a prognostic factor in soft tissue sarcoma. Mol Med. 6: 50-59, 2000.
    Taylor, J. A., Watson, M. A., Devereux, T. R., Michels, R. Y., Saccomanno, G., and Anderson, M. p53 mutation hotspot in radon-associated lung cancer. Lancet. 343: 86-87, 1994.
    Tong, Y., Smith, M. A., and Tucker, S. B. Chronic ultraviolet exposure-induced p53 gene alterations in Sencar mouse skin carcinogenesis model. Int J Hyg Environ Health. 51: 219-234, 1997.
    Veloso, M., Wrba, F., Kaserer, K., Heinze, G., Magalhaes, A., Herbst, F., and Teleky, B. p53 gene status and expression of p53, mdm2, and p21Waf1/Cip1 proteins in colorectal cancer. Virchows Arch. 437: 241-247, 2000.
    Vonlanthen, S., Heighway, J., Tschan, M. P., Borner, M. M., Altermatt, H. J., Kappeler, A., Tobler, A., Fey, M. F., Thatcher, N., Yarbrough, W. G., and Betticher, D. C. Expression of p16INK4a/p16alpha and p19ARF/p16beta is frequently altered in non-small cell lung cancer and correlates with p53 overexpression. Oncogene. 17: 2779-2785, 1998.
    Wadgaonkar, R. and Collins, T. Murine double minute (MDM2) blocks p53-coactivator interaction, a new mechanism for inhibition of p53-dependent gene expression. Journal of Biological Chemistry. 274: 13760-13767, 1999.
    Wang, X., Wang, S., and Feng, C. Detection of p53 and MDM2 gene expression in osteosarcoma with biotin-labelled in situ. Zhonghua Wai Ke Za Zhi. 35: 178-180, 1997.
    Wang, Y. C., Chen, C. Y., Chen, S. K., Cherng, S. H., Ho, W. L., and Lee, H. High frequency of deletion mutations in p53 gene from squamous cell lung cancer patients in Taiwan. Cancer Res. 58: 328-333, 1998.
    Weihrauch, M., Markwarth, A., Lehnert, G., Wittekind, C., Wrbitzky, R., and Tannapfel, A. Abnormalities of the ARF-p53 pathway in primary angiosarcomas of the liver. Human Pathology 33: 884-892, 2002.
    Wen, C. P., Tsai, S. P., and Yen, D. D. The health impact of cigarette smoking in Taiwan. Asia Pac J Public Health. 7: 206-213, 1994.
    Wen, W. H., Reles, A., Runnebaum, I. B., Sullivan-Halley, J., Bernstein, L., Jones, L. A., Felix, J. C., Kreienberg, R., el-Naggar, A., and Press, M. F. p53 mutations and expression in ovarian cancers: correlation with overall survival. Int J Gynecol Pathol. 18: 29-41, 1999.
    Wu, M. S., Shun, C. T., Sheu, J. C., Wang, H. P., Wang, J. T., Lee, W. J., Chen, C. J., Wang, T. H., and Lin, J. T. Overexpression of mutant p53 and c-erbB-2 proteins and mutations of the p15 and p16 genes in human gastric carcinoma: with respect to histological subtypes and stages. J Gastroenterol. 13: 305-310, 1998.
    Wu, X., Bayle, J. H., Olson, D., and Levine, A. J. The p53-mdm-2 autoregulatory feedback loop. Genes Dev. 7: 1126-1132, 1993.
    Xing, E. P., Nie, Y., Song, Y., Yang, G. Y., Cai, Y. C., Wang, L. D., and Yang, C. S. Mechanisms of inactivation of p14ARF, p15INK4b, and p16INK4a genes in human esophageal squamous cell carcinoma. Clin Cancer Res. 5: 2704-2713, 1999.
    Xue, Q., Sano, T., Kashiwabara, K., Saito, M., Oyama, T., and Nakajima, T. Aberrant expression of pRb, p16, p14ARF, MDM2, p21 and p53 in stage I adenocarcinomas of the lung. Pathol Int. 52: 103-109, 2002.
    Yang, S., Wang, M., and You, W. Overexpression of c-myc and p53 gene in human hepato-cellular carcinoma--a study with immunohistochemistry and in situ hybridization. Zhonghua Zhong Liu Za Zhi. 17: 415-417, 1995.
    Yu, S. Z. and Zhao, N. Combined analysis of case-control studies of smoking and lung cancer in China. Lung Cancer. 14: S161-170, 1996.
    Zambetti, G. P. and Levine, A. J. A comparison of the biological activities of wild-type and mutant p53. FASEB J. 7: 855-865, 1993.
    Zhang, J., Zheng, J., and Fang, W. p53 alterations in human lung cancer and their correlation with clinicopathological features and prognosis. Zhonghua Bing Li Xue Za Zhi. 27: 286-289, 1998.
    Zhang, Y., Xiong, Y., and Yarbrough, W. G. ARF promotes MDM2 degradation and stabilizes p53: ARF-INK4a locus deletion impairs both the Rb and p53 tumor suppression pathways. Cell. 92: 725-734., 1998.
    Zheng, S., Chen, P., McMillan, A., Lafuente, A., Lafuente, M. J., Ballesta, A., Trias, M., and Wiencke, J. K. Correlations of partial and extensive methylation at the p14(ARF) locus with reduced mRNA expression in colorectal cancer cell lines and clinicopathological features in primary tumors. Carcinogenesis. 21: 2057-2064, 2000.
    Zhou, B. P., Liao, Y., Xia, W., Zou, Y., Spohn, B., and Hung, M. C. HER-2/neu induces p53 ubiquitination via Akt-mediated MDM2 phosphorylation. Nat Cell Biol. 3: 973-982, 2001.
    Zindy, F., Eischen, C. M., Randle, D. H., Kamijo, T., Cleveland, J. L., Sherr, C. J., and Roussel, M. F. Myc signaling via the ARF tumor suppressor regulates p53-dependent apoptosis and immortalization. Genes Dev. 12: 2424-2433, 1998.
    Zöchbauer-Müller, S., Fong, K. M., Virmani, A. K., Geradts, J., Gazdar, A. F., and Minna, J. D. Aberrant promoter methylation of multiple genes in non-small cell lung cancers. Cancer Res. 61: 249-255, 2001.

    QR CODE