簡易檢索 / 詳目顯示

研究生: 鄭博修
Bo-Siou Zheng
論文名稱: 以理論計算探討以金屬為基材的單原子催化劑上進行二氧化碳電化學還原成乙醇的反應機制
Computational Exploration of Electrochemical CO2 Reduction to Ethanol on the Metal Supported Single-Atom Catalyst
指導教授: 蔡明剛
Tsai, Ming-Kang
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 48
中文關鍵詞: 理論計算單原子催化劑二氧化碳還原
英文關鍵詞: Theoretical calculation, single atom catalyst, CO2 reduction
DOI URL: http://doi.org/10.6345/NTNU202001213
論文種類: 學術論文
相關次數: 點閱:121下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 第一章 緒論 1 第二章 理論計算與方法 10 2-1計算條件 10 2-2 計算方式 10 2-3 電子結構相關理論 11 2-3-1 密度泛函理論 (Density functional theory , DFT) 11 2-3-2 局部密度近似法 (LDA) 13 2-3-3 廣義梯度近似法 (GGA) 13 2-3-4 空間週期性 (periodic boundary condition) 14 2-3-5 布洛赫理論 (Bloch Theorem) 14 2-3-6 投影綴加波 (projector augmented wave method, PAW) 15 2-3-7 贗勢 (pseudo-potential) 15 2-4 計算方法相關理論 16 2-4-1 VASP計算軟體 16 2-4-2 幾何優化與過渡態理論 17 2-4-3 擾動彈簧模型 (Nudged Elastic band , NEB)與Climbing image nudged elastic band (CI-NEB) 18 第三章 結果與討論 19 3-1 系統合理性測試 19 3-2 Pd表面的設計 19 3-4 單原子銅的擺放及催化劑的選擇 24 3-5 一氧化碳的位置擺放 26 3-6 後續機制的探討 29 3-7 Pd(111)模型的反應路徑探討 30 3-8 Pd(100)模型的反應路徑探討 31 3-8-1 CO-CO、CO-CHO及COH-CHO耦合 31 3-8-2 二氧化碳的引入之路徑探討 35 總結 44 參考文獻 45

    1. Friedlingstein, P.; Jones, M.; O'sullivan, M.; Andrew, R.; Hauck, J.; Peters, G.; Peters, W.; Pongratz, J.; Sitch, S.; Le Quéré, C., Global carbon budget 2019. Earth Syst. Sci. Data, 2019, 11 (4), 1783-1838.
    2. Lean, J. L.; Rind, D. H., How natural and anthropogenic influences alter global and regional surface temperatures: 1889 to 2006. Geophys. Res. Lett., 2008, 35 (18).
    3. Hepburn, C.; Adlen, E.; Beddington, J.; Carter, E. A.; Fuss, S.; Mac Dowell, N.; Minx, J. C.; Smith, P.; Williams, C. K., The technological and economic prospects for CO2 utilization and removal. Nature, 2019, 575 (7781), 87-97.
    4. Kortlever, R.; Shen, J.; Schouten, K. J. P.; Calle-Vallejo, F.; Koper, M. T., Catalysts and reaction pathways for the electrochemical reduction of carbon dioxide. . J. Phys. Chem. Lett., 2015, 6 (20), 4073-4082.
    5. Russell, P.; Kovac, N.; Srinivasan, S.; Steinberg, M., The electrochemical reduction of carbon dioxide, formic acid, and formaldehyde. . J. Electrochem. Soc. 1977, 124 (9), 1329.
    6. Zhao, G.; Huang, X.; Wang, X.; Wang, X., Progress in catalyst exploration for heterogeneous CO2 reduction and utilization: a critical review. J. Mater. Chem. A, 2017, 5 (41), 21625-21649.
    7. Jiang, K.; Siahrostami, S.; Zheng, T.; Hu, Y.; Hwang, S.; Stavitski, E.; Peng, Y.; Dynes, J.; Gangisetty, M.; Su, D., Isolated Ni single atoms in graphene nanosheets for high-performance CO2 reduction. Energy Environ. Sci., 2018, 11 (4), 893-903.
    8. Chia, X.; Pumera, M., Characteristics and performance of two-dimensional materials for electrocatalysis. Nat. Catal., 2018, 1 (12), 909-921.
    9. Vayenas, C. G.; White, R. E.; Gamboa-Aldeco, M. E., Modern Aspects of Electrochemistry 42. Springer Science & Business Media: 2008; Vol. 42.
    10. Hoffman, Z. B.; Gray, T. S.; Moraveck, K. B.; Gunnoe, T. B.; Zangari, G., Electrochemical reduction of carbon dioxide to syngas and formate at dendritic copper–indium electrocatalysts. ACS Catal., 2017, 7 (8), 5381-5390.
    11. Handoko, A. D.; Chen, H.; Lum, Y.; Zhang, Q.; Anasori, B.; Seh, Z. W., Two-dimensional titanium and molybdenum carbide MXenes as electrocatalysts for CO2 reduction. iScience 2020, 101181.
    12. Hori, Y.; Kikuchi, K.; Suzuki, S., Production of CO and CH4 in electrochemical reduction of CO2 at metal electrodes in aqueous hydrogencarbonate solution. Chem. Lett., 1985, 14 (11), 1695-1698.
    13. Raciti, D.; Wang, C., Recent advances in CO2 reduction electrocatalysis on copper. ACS Energy Lett. 2018, 3 (7), 1545-1556.
    14. Zhao, J.; Xue, S.; Barber, J.; Zhou, Y.; Meng, J.; Ke, X., An overview of Cu-based heterogeneous electrocatalysts for CO2 reduction. J. Mater. Chem. A, 2020, 8 (9), 4700-4734.
    15. Ma, W.; Xie, S.; Liu, T.; Fan, Q.; Ye, J.; Sun, F.; Jiang, Z.; Zhang, Q.; Cheng, J.; Wang, Y., Electrocatalytic reduction of CO2 to ethylene and ethanol through hydrogen-assisted C–C coupling over fluorine-modified copper. Nat. Catal., 2020, 478-487.
    16. Bernal, M.; Bagger, A.; Scholten, F.; Sinev, I.; Bergmann, A.; Ahmadi, M.; Rossmeisl, J.; Cuenya, B. R., CO2 electroreduction on copper-cobalt nanoparticles: Size and composition effect. Nano Energy, 2018, 53, 27-36.
    17. Vickers, J. W.; Alfonso, D.; Kauffman, D. R. J. E. T., Electrochemical carbon dioxide reduction at nanostructured gold, copper, and alloy materials. Energy Technol. 2017, 5 (6), 775-795.
    18. Reske, R.; Mistry, H.; Behafarid, F.; Roldan Cuenya, B.; Strasser, P., Particle size effects in the catalytic electroreduction of CO2 on Cu nanoparticles. J. Am. Chem. Soc. 2014, 136 (19), 6978-6986.
    19. Hori, Y.; Murata, A.; Takahashi, R., Formation of hydrocarbons in the electrochemical reduction of carbon dioxide at a copper electrode in aqueous solution. J. Chem. Soc., Faraday Trans., 1989, 85 (8), 2309-2326.
    20. Wu, H.; Chang, Y.; Wu, J.; Lin, J.; Lin, I.; Chen, C., Methanation of CO2 and reverse water gas shift reactions on Ni/SiO2 catalysts: the influence of particle size on selectivity and reaction pathway. Catal. Sci. Technol., 2015, 5 (8), 4154-4163.
    21. Wang, A.; Li, J.; Zhang, T., Heterogeneous single-atom catalysis. Nat. Rev. Chem., 2018, 2 (6), 65-81.
    22. Yang, X.-F.; Wang, A.; Qiao, B.; Li, J.; Liu, J.; Zhang, T., Single-atom catalysts: a new frontier in heterogeneous catalysis. Acc. Chem. Res. 2013, 46 (8), 1740-1748.
    23. Millet, M.-M.; Algara-Siller, G.; Wrabetz, S.; Mazheika, A.; Girgsdies, F.; Teschner, D.; Seitz, F.; Tarasov, A.; Levchenko, S. V.; Schlögl, R., Ni single atom catalysts for CO2 activation. J. Am. Chem. Soc. 2019, 141 (6), 2451-2461.
    24. Qiao, B.; Wang, A.; Yang, X.; Allard, L. F.; Jiang, Z.; Cui, Y.; Liu, J.; Li, J.; Zhang, T., Single-atom catalysis of CO oxidation using Pt 1/FeO x. Nat. Chem., 2011, 3 (8), 634-641.
    25. Li, M.; Wang, H.; Luo, W.; Sherrell, P. C.; Chen, J.; Yang, J., Heterogeneous Single‐Atom Catalysts for Electrochemical CO2 Reduction Reaction. Adv. Mater. 2020, 2001848.
    26. Varela, A. S.; Ranjbar Sahraie, N.; Steinberg, J.; Ju, W.; Oh, H. S.; Strasser, P., Metal‐doped nitrogenated carbon as an efficient catalyst for direct CO2 electroreduction to CO and hydrocarbons. Angew. Chem. Int., 2015, 127 (37), 10758-10762.
    27. Saavedra, J.; Pursell, C. J.; Chandler, B. D., CO oxidation kinetics over Au/TiO2 and Au/Al2O3 catalysts: evidence for a common water-assisted mechanism. J. Am. Chem. Soc. ,2018, 140 (10), 3712-3723.
    28. Zhang, X.; Sun, Z.; Wang, B.; Tang, Y.; Nguyen, L.; Li, Y.; Tao, F. F., C–C coupling on single-atom-based heterogeneous catalyst. J. Am. Chem. Soc., 2018, 140 (3), 954-962.
    29. Guo, R.-H.; Liu, C.-F.; Wei, T.-C.; Hu, C.-C., Electrochemical behavior of CO2 reduction on palladium nanoparticles: Dependence of adsorbed CO on electrode potential. Electrochem. commun, 2017, 80, 24-28.
    30. Peterson, A. A.; Nørskov, J. K., Activity descriptors for CO2 electroreduction to methane on transition-metal catalysts. J. Phys. Chem. Lett. 2012, 3 (2), 251-258.
    31. Liu, L.; Fan, F.; Jiang, Z.; Gao, X.; Wei, J.; Fang, T., Mechanistic study of Pd–Cu bimetallic catalysts for methanol synthesis from CO2 hydrogenation. J. Phys. Chem. C, 2017, 121 (47), 26287-26299.
    32. Arblaster, J. W., Crystallographic properties of palladium. Platin. Met. Rev, 2012, 56 (3), 181-189.
    33. Hohenberg, P.; Kohn, W., Inhomogeneous electron gas. Phys. Rev., 1964, 136 (3B), B864.
    34. Kohn, W.; Sham, L. J., Self-consistent equations including exchange and correlation effects. Phys. Rev., 1965, 140 (4A), A1133.
    35. Schlegel, H. B., Exploring potential energy surfaces for chemical reactions: an overview of some practical methods. J. Comput. Chem., 2003, 24 (12), 1514-1527.
    36. Balbaa, I.; Hardy, P.; San-Martin, A.; Coulter, P.; Machester, F. J. J. o. P. F. M. P., The effect of lattice distortions on the X-ray measurement of lattice parameters for PdHx. I. Empirical relationships. J Phys F Met Phys, 1987, 17 (10), 2041.
    37. Montoya, J. H.; Peterson, A. A.; Nørskov, J. K., Insights into C-C Coupling in CO2 Electroreduction on Copper Electrodes. ChemCatChem 2013, 5 (3), 737-742.
    38. Calle‐Vallejo, F.; Koper, M. T., Theoretical considerations on the electroreduction of CO to C2 species on Cu (100) electrodes. Angew. Chem. Int. 2013, 125 (28), 7482-7485.
    39. Tao C.; Hai X.; William A. Goddard III., Full atomistic reaction mechanism with kinetics for CO reduction on Cu(100) from ab initio molecular dynamics free-energy calculations at 298 K. PNAS, 2017, 114 (8), 1795–1800
    40. Pacansky, J.; Wahlgren, U.; Bagus, P., SCF ab‐initio ground state energy surfaces for CO2 and CO2−. J. Chem. Phys. 1975, 62 (7), 2740-2744.

    無法下載圖示 本全文未授權公開
    QR CODE