研究生: |
高勤為 Kao, Chin-Wei |
---|---|
論文名稱: |
經由有機催化連鎖1,6/Acetalization/Oxa-Michael加成反應合成三環苯併吡喃酮架構 Synthesis of Tricyclic chromanone Skeletons via Organocascade 1,6/Acetalization/Oxa-Michael Addition Sequence |
指導教授: |
陳焜銘
Chen, Kwun-Min |
學位類別: |
碩士 Master |
系所名稱: |
化學系 Department of Chemistry |
論文出版年: | 2017 |
畢業學年度: | 105 |
語文別: | 中文 |
論文頁數: | 105 |
中文關鍵詞: | 1,6-加成反應 、有機連鎖反應 、三環 |
英文關鍵詞: | 1,6-addition, Organocascade, tricyclic |
DOI URL: | https://doi.org/10.6345/NTNU202202241 |
論文種類: | 學術論文 |
相關次數: | 點閱:406 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文利用有機小分子進行有機不對稱三階連鎖反應,得以發展高度官能基非鏡像選擇性的三環苯併吡喃結構。本實驗室利用肉桂醛結合苯磺醯胺與1,3-雙酮所衍生之起始物,利用20 mol% 的碳酸銫,進行1,6/縮醛/1,4加成三階連鎖反應,得到多取代的三環苯並吡喃結構,同時建構四個光學立體中心,有著優異的產率 ( 高達99% ) 及非鏡像選擇性 ( 高達 > 20:1 ) 。此外,也經由單晶繞射X-ray確認產物結構之相對立體組態。
In this paper, organocascade triple reaction that catalyzed by small organic molecules have been developed and successfully accessed to the highly functional diastereoselective tricyclic chromane.The reaction between that cinnamaldehyde combine with phenylsulfonamide and 1,3-dione skeleton and caesium carbonate via 1,6-/acetalization/1,4- addition triple cascade reaction to generate highly functionalized tricyclic and construct four stereocenters in simultaneously. The tricyclic products have been obtained good yields ( up to 99% ) and excellent diastereoselectivities ( up to > 20:1 dr ). The relatived configuration of the cyclized product was determined by the single crystal X-ray analysis.
1. http://en.wikipedia.org/wiki/Chemistry
2. http://en.wikipedia.org/wiki/Organic_chemistry
3. CHEMISTRY(THE CHINESE CHEM. SOC., TAIPEI)March. 2006, 64, 21.
4. Bredig, G.; Fiske, W. S. Biochem. Z. 1912, 7.
5. List, B.; Lerner, R. A.; Barbas, C. F. III J. Am. Chem. Soc. 2000, 122, 2395.
6. Jacobsen, E. N; Doyle, A. G. Chem. Rev. 2007, 107, 5713.
7. Jiang, H.; Albrecht, Ł.; Jørgensen, K. A. Chem. Sci. 2013, 4, 2287.
8. Donslund, B. S; Johansen, T. K; Poulsen, P. H; Halskov, K. S; Jørgensen, K. A. Angew. Chem. Int. Ed. 2015, 54, 13860.
9. Michael, A. J. Prakt. Chem. 1887, 35, 349.
10. Du, D. M; Zhou, W. M; Liu, H. Org. Lett. 2008, 10, 2817.
11. Sahoo, G; Rahaman, H; Madarsz, A; Ppai, I; Melarto, M; Valkonen, A; Pihko, P. M; Angew. Chem. 2012, 51, 13144.
12. Bernardi, L; J. L;Cantarero, Niess, B. and Jørgensen, K.A. J. Am. Chem. Soc. 2007, 129, 17, 5773.
13. Tian, X; Liu, Y.; Melchiorre, P. Angew. Chem. Int. Ed., 2012, 51, 6439.
14. Feng, X; Zhou, Z; Yin, X; Li, R.; Chen, Y. C. Eur. J. Org. Chem., 2014, 5906.
15. Jørgensen, K. A.; Poulsen, P. H.; Feu, K. S.; Paz, B. M.; Jensen, F. Angew. Chem Int. Ed. 2015, 127, 8321.
16. Enders, D Hüttl, M. R.; Grondal, C.; Rabbe, G. Nature 2006, 441, 861.
17. Hong, B.C, Roshan Y. N, Amit A. Sadani, andLiao, J.H, Org. Lett., 2008 10, 12.
18. Hong, L, Wang, .L. , Wong, W.S.K, Wang ,R., J. Org. Chem. 2009, 74, 6881.
19. Liu, C; Zhang, X; Wang, R; Wang, W; Org. Lett., 2010, 12, 21.
20. Raja, A; Hong, B.C; Lee, G.H; Org. Lett. 2014, 16, 5756.
21. Blümel, M.; Chauhan, P.; Hahn, R.; Raabe, G.; Enders, D. Org. Lett., 2014, 16, 6012.
22. Kumar, M; Chauhan, P; Valkonen, A; Rissanen, K; Enders, D; Org. Lett. 2017, 19, 3025.