研究生: |
吳淑卿 Shu-Ching Wu |
---|---|
論文名稱: |
以期望確認理論探討網路自我效能、功能價值與持續使用意圖之相關研究-以國稅資訊系統為例 Using expectation confirmation model to study the correlation between internet f-efficacy, utilitarian value and continued intention: A case study of the taxation information selsystem |
指導教授: |
洪榮昭
Hong, Jon-Chao |
學位類別: |
碩士 Master |
系所名稱: |
工業教育學系 Department of Industrial Education |
論文出版年: | 2014 |
畢業學年度: | 102 |
語文別: | 中文 |
論文頁數: | 110 |
中文關鍵詞: | 期望確認理論 、網路自我效能 、功能價值 |
英文關鍵詞: | expectation confirmation model, internet self-efficacy, utilitarian value |
論文種類: | 學術論文 |
相關次數: | 點閱:542 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
科技日新月益,政府為推行電子化政府積極推動雲端計畫,第四階段電子化政府計畫(2012年至2016年),結合新興雲端運算技術,已持續進行,財政部為配合計畫已推動整合賦稅再造。本研究在探討稽徵人員使用國稅資訊系統,對於賦稅再造後之國稅資訊系統之持續使用之意圖。
本研究整合期望確認理論與資訊系統成功模式,結合外生變數網路自我效能及功能價值,藉以探討使用者對國稅資訊系統的持續使用意圖。以問卷調查研究方式,共回收有效樣本203份,經研究結果發現:1.網路自我效能對系統品質確認及資訊品質確認具有顯著正向影響、2.系統品質確認及資訊品質確認對功能價值具有顯著正向影響、3.功能價值對持續使用意圖具有顯著正向之影響。
由研究之結果顯示網路自我效能、系統品質確認、資訊品質確認、系統功能價值,會影響國稅資訊系統繼續使用之意圖。因此未來如何提升系統使用者之繼續使用意圖,可朝提升國稅系統使用者之網路自我效能、增加系統及資訊品質確認及功能價值方向著手。
The technology progressing day by day, the government actively promotes the implementation of e-government cloud project. It has been ongoing that the fourth stage of e-government plan (2012-2016), which was combined with the emerging cloud computing technologies. To match the plan, the Ministry of Finance has been promoting the integration of tax reforming. This study investigated among the tax officers the continuing use of tax information system after tax reforming.
Integration of expected confirm theory and information systems success mode, joined the internet self-efficacy and utilitarian value, investigates the intention of continuing use of tax information system. There were 203 valid samples collected in the survey. The study revealed three features: (1) Internet self-efficacy can positively predict by system quality and information quality. (2) Quality and information quality influences positively on utiliarian value. (3) Utiliarian value is the antecedent of intention of continuing use.
The results of the study revealed that the four factors will affect the intention of continuing use the tax information system: Internet self-efficacy, system quality confirmation, information quality confirmation, and the utiliarian value. Therefore, to raise the intention of continuing use of the Tax Information System, this study imply to improve internet self-efficacy, affirming system and information quality, increasing utilitarian value.
王淑娟、李元恕、黃怡仁、方國定(2008)。建構資訊系統持續使用意圖模式:以中部某大學為實證對象。科技管理學刊,13,1-30。
包文凱(2005) 。國稅務機關導入資訊系統成效之研究-以國稅局稅務平台為例。淡江大學會計學研究所碩士論文。新北市。
江啟惠、黃聖哲、江郡瑩、呂思賢、陳孟亭 (2011.12)以體驗價值探討 Facebook持續使用之意圖。第十七屆資訊管理暨實務研討會,嘉南藥理科技大學。
池文海、廖銘珠(2007)。醫療院所資訊系統成功模式之研究。陳希順(主持人),管理新思維。管理新思維學術研討會,台灣科技大學。
行政院研究發展考核委員會(2011)。第四階段電子化政府計畫。台北市。
吳明隆、涂慶堂(2010)。SPSS操作與應用:問卷統計分析實務(修正版)。台北市 :五南。
吳萬益(2005)。企業研究方法(第二版)。台北市,華泰。
呂孟騏(2008)。以科技接受模型及系統成功模型探討全國教師在職進修資訊網-以屏東縣國小教師為例。逢甲大學教育科技研究所碩士論文,台中市。
李婉怡、趙珮如(2004)。醫療產業員工對電子病歷之科技接受模式探討-以中南部地區為例。醫務管理期刊,5,243-269。
周韻采(2003)。電子化政府績效的比較研究:以政府入口網站為例。公共行政學報,(9),35-58。
林心慧、曾琬婷(2008)。顧客觀點之線上旅遊系統成功模式:整合理性層級理論與心流理論。電子商務學報,10,689-714。
林東清(2003)。資訊管理e化企業的核心競爭力,初版。台北:智勝,160-195.
林信志、湯凱雯、賴信志(2000)。以科技接受模式探討大學生學習以網路教學系統製作數位教材之意圖和成效。數位學習科技期刊,2,60-78。
邱郁文、方國定(2005)。整合知覺玩興構面擴充資訊科技接受模式-以入口網站為例。資訊管理展望,1,37-54。
邱皓政 (2003) 。結構方程模式:LISTEL的理論、技術與應用。台北:雙葉。
邱皓政(2011)。量化研究與統計分析,第五版。臺北市: 五南。
姚登元(2006)。電腦自我效能對ERP系統使用績效影響之研究。國立中央大學企業管理學系碩士論文,桃園縣。
洪明洲(民88)。網路教學課程設計對學習成效的影響研究。遠距教學系統化教材設計國際研討會論文集,1-24。
洪新原、張麗敏、劉淑娟(民101)。應用差異理論探討資訊系使用者滿意度之研究- 不同使用者觀點之比較。資訊管理學報,17,57-81。
胡凱傑、鍾文鑑、丘志文(2010)。以科技接受模式探討光纖寛頻網路使用者行為意向之影響因素。行銷評論2010年夏季,7,161-186。
財政部財稅資料中心(2010)。賦稅資訊系統整合再造更新整體實施計畫「國稅建置委外服務案」。台北市。
高曼婷(2010)。結合資訊系統成功模式與科技接受模式探討資訊系統使用行為─以臺北益教網為例。國立臺灣師範大學應用電子科技學系碩士論文。台北市
高睿璟(2002)。影響非同步網路教學系統持續再使用意願因素之研究。淡江大學資訊管理學系碩士論文。台北市。
張偉豪(2011)。SEM 論文寫作不求人。臺北市:鼎茂。
許文和(2006)。國道高速公路即時交通資訊網站使用意願之研究。成功大學交通管理學系碩士論文,台南市。
許麗玲、徐村和、吳憲政(民98)。影響部落格使用意向的前置因素。電子商務學報, 11, 1-28。
郭生玉(1988)。心理與教育測驗。台北市:精華。
陳怡君(2008)。以態度中介IS滿意度與持續使用之研究。中央大學企業管理研究所碩士論文,桃園縣。
陳建文、陳文國、李宜璟(2011.6)。數位學習平台學生滿意度之研究-以逢甲大學iLearn 系統為例。姚立德(主持人),探討臺灣技職教育發展的使命與挑戰。2011技職教育永續發展學術研討會,國立臺北科技大學。
陳彥勳(2009)。以科技接受模型探討影響企業員工使用數位學習系統之研究。中央大學碩士論文,未出版,桃園縣。
陳國珍(2010)。以科技接受模式及資訊系統成功模式探討使用者對高雄市政府教育局體育衛生管理系統子系統-流感疫情通報系統使用意意之研究。國立屏東教育大學數位學習教學所碩士論文,屏東縣。
陳淑鳯(2001) 。電子化政府下國稅稽徵人員資訊科技接受行為模式之研究,國立中山大學公共事務管理研究所,碩士論文
陳順宇(2004)。多變量分析。台北市:華泰。
陳煜鑫(2003) 。使用解構之期望符合論探討WWW持續使用之影響因素,國立高雄第一科技大學資訊管理所,碩士論文。
陳碧玉(2004) 。公文電子化系統效能之研究—以屏東縣政府為例,國立高雄第一科技大學資訊管理所,碩士論文。
陳碧玉(2009) 。個人差異對ERP系統持續使用意願之影響-縱貫面研究
。國立高雄第一科技大學管理研究所,博士論文。
陳叡智、包文凱(2007) 。政府機關導入資訊系統成效之研究-以國稅局稅務平台系統為例,中原企管評論,5(2),78。
陳燕慧(2010)。公務部門會計系統使用者滿意度之研究-以縣市公務預算會計資訊系統為例。國立中正大學會計與資訊科技研究所碩士論文。未出版,嘉義縣。
傅德生(2010)。影響使用數位學習系統滿意度與使用意願之研究-整合資訊系統成功模型與科技接受模型。國立中央大學企業管理研究所碩士論文,未出版,桃園縣。
黃士銘、李超雄、劉永彬(民94)。影響會計資訊品質因素之研究-以國立大專院校會計資訊系統使用者為例。華人前曕研究,1,65-101。
黃芳銘(2006)。結構方程模式-理論與應用(第四版)。台北市:五南。
鄒漢民(2009)。價值性認知對於IS滿意度影響之研究。國立中央大學企業管理研究所碩士論文,中壢市。
榮泰生(2011)。AMOS與研究方法。四版,台北市:五南。
劉淑娟(2003)。應用差異理論探討資訊系統使用者滿意度之研究-以中正大學會計資訊系統為例。國立中正大學會計與資訊科技研究所碩士論文,未出版,嘉義縣。
蔡玉娟、梁家銘(2009)。以資訊系統成功模式及科技接受模式探討國小學生健康資訊管理系統之研究。高雄師大學報,27,35-59。
鄭經文(2008)。從科技接受模式與資訊系統成功模式探討圖書館資訊系統的使用-以國立屏東教育大學為例。國立屏東教育大學教科技研究所碩士論文,屏東縣。
鄭維武(2010)。政府資訊系統成功模式之探討-以國稅局資訊系統為例。國立高雄應用大學商務經營研究所碩士論文,高雄市。
賴盈宗(2006)。職能、自我效能與績效關聯性研究-以臺灣S人壽及中國大陸T人壽業務單位為例。暨南國際大學國際企業研究所碩士論文,南投。
賴崇閔、黃秀美、廖述盛、黃雯雯(2009)。3D虛擬實境應用於醫學教育接受度之研究。教育心理學報,40,341-361。
魏文欽、賴佳伶 (2011)。影響美妝網站使用意圖關鍵因素之實證研究。中華理論結構模式LISREL學會,4(2),70-94。
Anderson, E. W., & Sullivan, M. W. (1993). The antecedents and consequences of customer satisfaction for firms. Marketing Science, 12(2),125-143.
Anderson, J. C., & Gerbing, D. W. (1988), Structural equation modeling in practice: A review and recommended two-step approach. Psychological Bulletin, 103(3), 411-423.
Babin, B.J., & Darden, WR. (1995). Consumer self-regulation in a retail environment. Journal of Retailing 71(1), 47-70.
Babin, B. J., Darden, W. R., & Griffin, M. (1994). Work and/or fun, measuring hedonic and utilitarian shopping value. Journal of Consumer Research 20(4), 644-656.
Bagozzi, R. P., & Yi, Y. (1988). On the evaluation of structure equations models. Academic of Marketing Science, 16(3), 76-94.
Bagozzi, R. P., & Yi, Y. (1990). Assessing method variance in multitrait- multitrait-multimethod matrices: The case of self-reported affect and perceptions at work. Journal of Applied Psychology, 75, 547-560
Bailey, J. E., & Pearson, S.W. (1983). Development of tool for measuring and analyzing computer user satisfaction. Management Science, 29(5),530-545.
Bandura, A. (1977). Self-efficacy: Toward a unifying theory of behavioral change. Psychological Review, 84, 191-215.
Bandura, A. (1977). Social learning theory. N J: Prentice-Hall。
Bandura, A. (1982). Self-efficacy mechanism in human agency. American Psychologist, 37(2), 122-147.
Batra, R., & Ahtola, O.T.(1991). Measuring the hedonic and utilitarian sources of consumer attitudes. Marketing Letters 2(2), 159-170.
Berdie, D. R. (1994). Reassessing the value of high response rates to mail surveys. Marketing Research, 1(3), 52-64.
Bhattacherjee, A. (2001). Understanding information systems continuance: An expectation confirmation model. MIS Quarterly, 25(3), 351-370.
Bhattacherjee, A., & Premkumar, G. (2004) Understanding changes in belief and attitude toward information technology usage: A theoretical model and longitudinal test. MIS Quarterly, 28(2), 229-254.
Chen, H. H., & Chen, S. C. (2009). The empirical study of automotive telematics acceptance in Taiwan: Comparing three technology acceptance models. International Journal of Mobile Communications, 7(1), 50-65.
Compeau, D. R., & Higgins, C. A. (1995). Computer self-efficacy: Development of a measure and initial test. MIS Quarterly, 19(2), 189-211.
Crowley, A. E., Spangenberg, E. R., & Hughes, K. R. (1992). Measuring the hedonic and utilitarian dimensions of attitudes toward product categories. Marketing Letters, 3(3), 239-249.
Cyert, R. M., & March, J. G. (1963). A behavioral theory of the firm. Englewood Cliffs, NJ: Prentice-Hall.
Dabholkar, P. A., Shepard, C. D., & Thorpe, D. I. ( 2000). A comprehensive framework for service quality: An investigation of critical conceptual and measurement issues through a longitudinal study. Journal of Retailing, 76(2), 139-173.
Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Quarterly, 13, 319-340.
Davis, F. D., Bagozzi, R. P., & Warshaw, P. R. (1986). User acceptance of computer technology: A comparison of two theoretical models. Management Science, 35(8), 982-1003.
DeLone, W. H., & McLean, E. R. (1992). Information systems success: The quest for the dependent variable. Information Systems Research, 3(1), 60.
DeLone, W. H., & McLean, E. R. (2003). The DeLone and McLean model of information systems success: A ten-year update. Journal of Management Information Systems, 19(4), 9-30.
Festinger, L. (1957). A theory of cognitive dissonance. Evanston, IL: Row, Peterson, & Company.
Fishbein, M., & Ajzen, I. (1975). Beliefs, attitude, intention and behavior: An introduction to theory and research. Reading, MA: Addison-Wesley.
Forster, S., & Lavie, N. (2007). High perceptual load makes everybody equal: Eliminating individual differences in distractibility with load. Psychological Science, 18, 377-381.
Gist, M. E., Schwoerer. C., & Rosen, B. (1989). Effects of alternative training methods on self-efficacy and performance in computer software training. Journal of Applied Psychology, 74(6), 884-891.
Gravill, J. I., Compeau, D. R., & Marcloin, B.L. (2000). Metacognition in IT: The influence of self-efficacy and self-awareness. Retrieved 12/06/2012 from http://melody.syr.edu/hci/amcis02_minitrack/CR/Gravill.pdf
Hair, J. F., Black, W. C., Babin, B. J., & Anderson, R. E. (2010). Multivariate data analysis (7th ed.). Englewood Cliffs: Prentice Hall.
Holbrook, M. B. (1994). The nature of customer value: An axiology of services in the consumption experience. In R.T. Rust, & R. O. Oliver (Eds.), Service quality: New directions in theory and practice (pp. 21-71). Thousand Oaks, CA: Sage.
Holbrook, M.B., & Hirschman, E. C. (1982). The experiential aspects of consumption: Consumer fantasies, feelings, and fun. Journal of Consumer Research, 9(2), 132-140.
Igbaria, M., & Iivari, J. (1995). The effects of self-efficacy on computer usage. Omega, 23(6), 587-605.
Igbaria, M., Zinatelli, N., Cragg, A., & Cavaye, A. (1997). Personal computing acceptance factors in small firms: A structural equation model. MIS Quarterly, 21(3), 279-305
Kaiser, H. F. (1970). A second generation little Jiffy. Psychometrika, 35(4), 401-415.
Kenny, D. A. (2006). Confirmatory factor analysis for applied research. NY: Guilford.
Kline, R. B. (2005). Principles and practice of structural equation modeling. NY: Guilford.
Koushik, S., & Joodi, P. (2000). E-business architecture design issues. IT Professional, 2(3), 38-43.
Lacity, M. C., & Hirschheim, R. (1993). The information systems outsourcing Bandwagon. Sloan Management Review, 73-86.
Lee, M. C. (2010). Explaining and predicting users’ continuance intention toward E-Learning: An extension of the expectation- confirmation model. Computers & Education, 54(2), 506-516.
Legris,P., Ingham,J., & Collerette, P. (2003). Why do people use information technology? A critical review of the technology acceptance model. Information & Management, 40 (3), 191-204.
Liao, C. C., Palvia, P., & Chen, J. L. (2009). Information technology adoption behavior life cycle: Toward a technology continuance theory (TCT). International Journal of Information Management, 29(4), 309-320.
Liao, C., Chen, J. L., & Yen, D.C. (2007). Theory of planning behavior (TPB) and customer satisfaction in the continued use of e-service: An integrated model. Computers in Human Behavior, 23(6), 804-2822
Likert, R. A. (1932). A technique for the measurement of attitudes. Archives of Psychology, 140, 44-53.
Lin, J. C. C., & Lu, H. (2000). Towards an understanding of the behavioral intention to use a Web Site. International Journal of Information Management, 20(3), 197-208.
Lin, T. C., & Huang, C. C. (2008). Understanding knowledge management system usage antecedents: An integration of social cognitive theory and task technology fit. Information & Management, 45(6), 410-417.
Liu, Z. (2005). Reading behavior in the digital environment, changes in reading behavior over the past ten years. Journal of Documentation, 61(6), 700-712.
Mano, H., & Oliver, R.L.(1993). Assessing the dimensionality and structure of the consumption experience: Evaluation, feeling, and satisfaction. The Journal of Consumer Research 20(3), 451-466.
Marakas, G. M., Yi, M. Y., & Johnson, R. D. (1998). The multilevel and multifaceted character of computer self-efficacy: Toward clarification of the construct and an integrative framework of research. Information Systems Research, 9(2), 126-163.
McKinney,Y.& Zahedi. (2002)The Measurement of web-customer satisfaction: An expection and disconfirmation approach. Information Systems Research,13(3), 296-315.
Moon, J. W., & Kim, Y. G. (2001). Extending the TAM for a world-wide-web context. Information and Management, 38(4), 217-230.
Murphy, C. A., Coover, D., & Owen, S.V. (1989). Development and validation of the computer self-efficacy scale. Educational and psychological measurement, 49, 893-899.
Nunnally, J. C. (1978). Psychometric theory. New York: McGraw-Hill.
O'Cass, A., & Fenech, T. (2003).Web retailing adoption: Exploring the nature of Internet users web retailing behavior. Journal of Retailing and Consumer Services, 10(2), 81-94.
Oliver, R. L. (1980). A cognitive model for the antecedents and consequences of satisfaction. Journal of Marketing Research, 17(4), 460-469.
Oliver, R. L., (1993). Cognitive, affective, and attribute bases of the satisfaction response. Journal of Consumer Research, 20(3), 418-430.
Pai, Y. F., & Huang, K. I. (2010). Applying the technology acceptance model next term to the introduction of healthcare information systems. Technological Forecasting and social Change, 78(4), 650-660.
Parasuraman, A. (2000). Technology readiness index: A multiple-item scale to measure readiness to embrace new technologies. Journal of Service Research, 2(4), 307-320.
Park, N., Roman R., Lee, S., & Chung, J. E. (2009). User acceptance next term of a digital library system in developing countries: An application of the previous term technology acceptance model. International Journal of Information Management, 29(3), 196-209.
Patterson, P. G., Johnson, L. W. and Spreng, R. A.(1997) .Modeling the determinants of customer satisfaction for business-to-business professional services. Journal of the Academy of Marketing Science, 25(1) , 4-17.
Pitt, L. F., Watson, R. T., & Kavan C. B. (1995). Service quality: A measure of information systems effectiveness. MIS Quarterly, 19(2), 173-187.
Rahman, M., & Halladay, M. (1988). Accountancy information systems: Principles, applications and future directions. Englewood Cliffs, NJ: Prentice Hall.
Chen, R. F., & Hsiao, J. L. H. (2012). An empirical study of physicians’ acceptance of hospital information systems in Taiwan. Telemedicine and e-Health, 18(2), 120-125.
Recker, J. (2010), Explaining usage of process modeling grammars: Comparing three theoretical models in the study of two grammars. Information & Management, 47(5), 316-324.
Seddon, P. B. (1997). A respecification and extension of the DeLone and McLean model of IS success. Information Systems Research, 8(3), 240-253.
Spreng, R. A., MacKenzine, S. B., & Olshavsky, R.W. (1996). A reexamination of the determinants of consumer satisfaction. Journal of Marketing, 60, 15-32.
Tabachnick, B. G., & Fidell, L. S. (2007). Using multivariate statistics. Boston, MA: Allyn and Bacon.
Teo, T. (2010). Examining the influence of subjective norm and facilitating conditions on the intention to use technology among pre-service teachers: A structural equation modeling of an extended technology acceptance model. Asia Pacific Education Review, 11(2), 253-262.
Levitt, T. (1960). Marketing myopia. Harvard Business Review, 38, 45-56.
Thompson, L. F., Meriac, J. P., & Cope, J. G. (2002). Motivating online performance: The influences of goal setting and internet self-efficacy. Social Science Computer Review, 20(2), 149-160.
Tipper, S. P., & Baylis, G. C. (1987). Individual differences in selective attention: The relation of priming and interference to cognitive failure. Personality and Individual Differences, 8, 667-675.
Torkzadeh, G., Chang, C. J., & Demirhan, D. (2006). A contingencymodel of computer and internet self-efficacy. Information & Management, 43(4), 541-550.
Tsai, C.-C., & C.-P. Kao, (2009). Teachers’ attitudes toward web-based professional development, with relation to Internet self-efficacy and beliefs about web-based learning. Computers & Education, 53,66-73.
Tsai, C.-C., H.Peng, & Y.-T. Wu(2006). University students’self-efficacy and their attitudes toward the Internet: The role of students’perceptions of the internet. Education Studies, 32, 73-86.
Venkatesh, V., & Bala, H. (2008). Determinants of perceived ease of use: Integrating control, intrinsic motivation, and emotion into the technology acceptance model. Information Systems Research, 11(4), 342-365.
Venkatesh, V., & Davis, F. D. (1996). A model of the antecedents of perceived ease of use: Development and test. Decision Sciences, 27(3), 451-481.
Venkatesh,V., & Davis, F. D. (2000). A theoretical extension of the technology acceptance model: Four longitudinal field studies. Management Science, 46, 186-204.
Venkatesh,V., Morris G. M., Davis, G. B., & Davis, F. D. (2003). User acceptance of information technology: Toward a unified view. MIS Quarterly, 27(3), 425-478
Walace, J. C., Kass, S. J., & Stanny, C. J. (2002). The cognitive failures questionnaire revisited: Dimensions and correlates. Journal General Psychology, 129, 238-256.