簡易檢索 / 詳目顯示

研究生: 易山達
Imam, Safdar
論文名稱: 微結構協同機制對一碲化鍺 (GeTe)複合材料熱電表現的影響效應
Synergistic Micro Structural Impact on Thermoelectric Performance of GeTe Compounds
指導教授: 林豐利
Lin, Feng-Li
雷曼
Sankar, Raman
口試委員: 張嘉升
Chang, Chia-Seng
陳貴賢
Chen, Kuei-Hsien
雷曼
Sankar, Raman
劉祥麟
Liu, Hsiang-Lin
林豐利
Lin, Feng-Li
口試日期: 2022/01/17
學位類別: 博士
Doctor
系所名稱: 物理學系
Department of Physics
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 78
英文關鍵詞: GeTe thermoelecric, Carrier concentration optimization, Microcrystalline rods, Thermal conductivity, Figure of merit
研究方法: 實驗設計法
DOI URL: http://doi.org/10.6345/NTNU202200125
論文種類: 學術論文
相關次數: 點閱:193下載:13
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Germanium Telluride (GeTe) has been extensively investigated among the lead-free thermoelectric (TE) materials for its high thermoelectric performance (ZT) in mid-temperature; however, high p-type carrier density (∼10^21 cm-3) weakens its suitability for higher ZT's. To strengthen the thermoelectric properties of nature-friendly GeTe, we utilized Molybdenum (Mo), a widely used transition element, for further study and confirmed its role in enhancing GeTe's TE properties. The density functional theory (DFT) calculations and TE transport properties experiments were performed to study the influence of Mo doping on the Ge site of the GeTe system. DFT computations predict the additional dopant/impurity states induced by Mo-doping. Mo doping sharply decreased the carrier concentration, e.g., from 8.28×10^20 cm-3 (pristine GeTe) to 5.24×10^20 cm-3 for Ge0.97Mo0.03Te with a slight increase in the Seebeck at room temperature. The simultaneous reduction in thermal conductivity is correlated with optimized carrier concentration, multi-scale lattice deformation, verified by extensive microstructural studies, emphasized by microcrystalline rods (MCRs), high-density planar defects, nano strained domains, strained stacking faults, point defects, herringbone, strengthening all-frequency phonon scattering.
    Moreover, co-doping of Sb/Bi with Mo at the Ge sites primarily decreases the carrier concentration (n) and thermal conductivity (κ) to achieve a higher ZT. The co-doping of Sb/Bi demonstrated a prominent role with a maximum ZT of ∼ 2.14 and ∼ 2.3 at 673 K for the samples of Ge0.89Mo0.01Sb0.1Te and Ge0.89Mo0.01Bi0.1Te, respectively. This work reports one of the highest TE performances among the transition metal co-doping in the mid-temperature range. The synergistic performance with an ultralow thermal conductivity has been achieved primarily due to microcrystalline-assisted grain boundary formations, a possible pathway for reducing the thermal conductivity. Different scattering centers in Mo doped GeTe systems, which helps the reduction in κlat, and overall thermal conductivity reached an ultralow, owing to a highly disordered network formation to hinder the phonon transport.

    Preface ⅰ Acknowledgement ⅱ Abstract ⅲ List of Figures ⅵ List of Tables ⅹⅰ Chapter 1 Introduction to Thermoelectricity 1 1.1 Thermoelectric Fundamentals 1 1.1.1 Seebeck Effect 1 1.1.2 Peltier Effect 2 1.1.3 Thomson Effect 3 1.1.4 Thomson Relations 4 1.2 Thermoelectric Materials Analysis 4 1.2.1 Figure of Merit (ZT) 4 1.2.2 Thermoelectric Generator and Efficiency 5 1.2.3 Thermoelectric Refrigerator and Performance 6 1.3 Selection of Thermoelectric Materials 8 1.3.1 Electrical Conductivity 9 1.3.2 Seebeck Coefficient 10 1.3.3 Thermal Conductivity 10 1.4 Strategies to Enhance the TE Figure of Merit (ZT) 11 1.4.1 Strategies to Enhance the Electrical Conductivity 11 1.4.2 Strategies to Enhance the Seebeck Coefficient 14 1.4.3 Strategies to Reduce the Thermal Conductivity 17 1.5 Conclusion 21 References 21 Chapter 2 Review of Thermoelectric Materials and Applications 24 2.1 Introduction 24 2.2 High Performance Thermoelectric Materials 24 2.2.1 Bismuth Telluride (Bi2Te3) and Related TE Materials 24 2.2.2 Lead Telluride (PbTe) and Related TE Materials 26 2.2.3 Tin Selenide (SnSe) and Related TE Materials 28 2.2.4 Copper Selenide (Cu2Se) and Related TE Materials 30 2.2.5 Tin Telluride (SnTe) and Related TE Materials 32 2.2.6 Skutterudites Systems 34 2.2.7 Half Heusler (HH) Alloys 35 2.2.8 Germanium Telluride (GeTe) and Related TE Materials 37 2.3 Thermoelectric Material Applications 39 2.4 Conclusion 42 References 42 Chapter 3 Synthesis Methods and Thermoelectric Analysis 45 3.1 Synthesis of GeTe Based Materials 45 3.2 Structural Analysis of Samples 46 3.3 Seebeck Coefficient and Electrical Conductivity Measurements 50 3.4 Thermal Conductivity Measurements (LFA) 51 3.5 Physical Property Measurements Systems 53 3.6 Computational Details 53 References 53 Chapter 4 Mo-doped GeTe Based Thermoelectric Materials 54 4.1 Introduction 54 4.2 Purity and Phase Analysis 55 4.3 Microstructure Characterization 57 4.4 Electronic Structure and DFT Analysis 66 4.5 Thermoelectric Transport Properties 68 4.6 Conclusion 74 References 75 Chapter 5 Summary and Future Works 76 5.1 Summary 76 5.2 Potential Future Work 77 References 78

    Chapter 1
    [1] Abdel-Motaleb, Ibrahim M., arXiv:1704.07742 (2017).
    [2] Mori, T., and Priya, S., MRS Bulletin (2018) 43 (3), 176
    [3] DiSalvo, F. J., Science (1999) 285 (5428), 703
    [4] T. M. Tritt, Annu. Rev. Mater. Res. 2011. 41:433–48
    [5] G. Nolas, et al., Basic Principles and New Materials Developments. Germany:
    Springer, 2001.
    [6] Xiao-Lei Shi et al., Chem. Rev. 2020, 120, 7399−7515
    [7] L.D. Zhao, Journal of Materiomics 1.2 (2015): 92-105.
    [8] G.J. Snyder, et. al., Nat Mater, 7 (2008), pp. 105-114
    [9] Wood, C. "Materials for thermoelectric energy conversion." Reports on
    progress in physics 51.4 (1988): 459.
    [10] Ashcroft, Neil W., and N. David Mermin. "Solid-state physics." (1976).
    [11] Ibach, H., Luth, H., ‘Solid-State Physics: An Introduction to Principles of
    Materials Science,’ Springer, 2009, ISBN 978-3-540-93803-3.
    [12] Md. Nazibul Hasan et al., Int J Energy Res. 2020;44:6170–6222.
    [13] K.I. Bolotin, et al., Solid-state communications, 146(9-10), 351-355.
    [14] Ning Jia et al., Materials Today Physics 21 (2021): 100519.
    [15] F. Yang, et al., Adv. Mater. 33 (4) (2021) 2004786.
    [16] J.P. Heremans et al., Energy & Environmental Science, 5(2), 5510-5530.
    [17] Cutler M, Mott NF. Physical Review 181.3 (1969): 1336.
    [18] Pei, Yanzhong, et al. Nature 473.7345 (2011): 66-69.
    [19] Min Hong et al., Advanced materials 31.14 (2019): 1807071.
    [20] C Gayner et al., Advanced Functional Materials 30.18 (2020): 1901789.
    [21] Joseph P. Heremans, Nature Physics 11.12 (2015): 990-991.
    [22] Shen, Jia-Jun, et al., Journal of Inorganic Materials 34.3 (2019): 260.
    [23] W.D. Liu et al., Advanced Energy Materials, 10(19), 2000367.
    [24] Fan, S.et. al, Applied Physics Letters 96.18 (2010): 182104.
    [25] Xinyue Zhang, Joule 4.5 (2020): 986-1003.
    [26] Xiao-Lei Shi et al., Advanced Science 7, no. 7 (2020): 1902923.
    [27] Yu, B., et al., Nano letters (2012) 12 (4), 2077
    [28] Zebarjadi, M., et al., Nano letters (2011) 11 (6), 2225
    [29] Banik, A., and Biswas, K., Journal of Materials Chemistry A (2014) 2 (25), 9620
    [30] Liu, W., et al., Physical review letters (2012) 108 (16), 166601
    [31] Zhao, L.-D., et al., Energy & Environmental Science (2013) 6 (11), 3346
    [32] Fu, C., et al., Energy & Environmental Science (2015) 8 (1), 216
    [33] Ahmed, F., et al., Journal of Materials Chemistry A (2017) 5 (16), 7545
    [34] Ang, R., et al., Angewandte Chemie (2015) 127 (44), 13101
    [35] Hicks, L. D., and Dresselhaus, M. S., Physical Review B (1993) 47 (19), 12727
    [36] Liu, Z., et al., Proceedings of the National Academy of Sciences (2018) 115 (21),
    5332
    [37] Qiu, Y., et al., Journal of Materials Chemistry A (2019) 7 (46), 26393
    [38] Nunna, R., et al., Energy & Environmental Science (2017) 10 (9), 1928
    [39] Liu, Y., et al., Advanced Energy Materials (2016) 6 (9), 1502423
    [40] Meng, X., et al., Advanced Energy Materials (2017) 7 (13), 1602582
    [41] Lo, S. H., et al., Advanced Functional Materials (2012) 22 (24), 5175
    [42] Yang, J., et al., Applied physics letters (2004) 85 (7), 1140
    [43] Zhao, L.-D., et al., Nature (2014) 508 (7496), 373
    [44] Jana, M. K., et al., Angewandte Chemie (2016) 128 (27), 7923
    [45] Morelli, D., et al., Physical review letters (2008) 101 (3), 035901
    [46] Li, C. W., et al., Nature Physics (2015) 11 (12), 1063
    [47] Qin, P., et al., Journal of Materials Research (2017) 32 (16), 3029
    [48] Zhu, G., et al., Nano Energy (2013) 2 (6), 1172
    Chapter 2
    [1] G.A. Slack, CRC handbook of thermoelectrics (1995): 407-440.
    [2] I. T. Witting, T. C. Chasapis, F. Ricci et al., Advanced Electronic Materials 5, no. 6
    (2019): 1800904.
    [3] H. Shi, D. Parker, M. H. Du, and D. J. Singh, Physical Review Applied 3, no. 1
    (2015): 014004.
    [4] Witting IT, Ricci F, Chasapis TC, Hautier G, Snyder GJ. Research. 2020 Mar
    31;2020.
    [5] Witting, Ian T., et al., Advanced Electronic Materials 5, no. 6 (2019): 1800904.
    [6] Hasan MN et al., Int J Energy Res. 2020; 44:6170–6222.
    [7] Yu Xiao et al., npj Quantum Materials (2018) 3:55
    [8] Aaron D. LaLonde et al., Materials today 14.11 (2011): 526-532.
    [9] Jiangtao Wei et al., J Mater Sci (2020) 55:12642–12704
    [10] Xiao-Lei Shi et al., Advanced Science 7, no. 7 (2020): 1902923.
    [11] Chen Z-G et al., Prog Mater Sci. 2018; 97:283-346.
    [12] Chen YX et al., Adv Funct Mater. 2016;26(37):6836-6845.
    [13] Zhao, Li-Dong, et al., Energy & Environmental Science 9, no. 10 (2016): 3044-
    3060.
    [14] Lin Xie et al., Mater. Horiz., 2021,8, 1847-1865
    [15] Tyagi, K. et al., RSC advances 6, no. 14 (2016): 11562-11569.
    [16] Yuanhao Qin et al., Materials 2020, 13, 5704
    [17] Zixun Zhang et al., Energy & Environmental Science 13, no. 10 (2020): 3307-
    3329.
    [18] Zhuo, K.et al., Physical Review B 102.6 (2020): 064201.
    [19] H. Liu et al., Nature materials 11.5 (2012): 422-425.
    [20] Zhou, Zhiwei, et al., Journal of Materials Chemistry A 4.34 (2016):13171-13175.
    [21] G. Tan et al., J. Am. Chem. Soc. 2015, 137, 11507–11516.
    [22] R. Moshwan et al., Advanced Functional Materials 27.43 (2017): 1703278.
    [23] Zhiyu Chen et al., Journal of Materials Chemistry A 8.33 (2020): 16790-16813.
    [24] O. Madelung, U. Rössler, M. Schulz, Non-Tetrahedrally Bonded Elements and
    Binary Compounds I, Springer, Berlin 1998.
    [25] X. J. Tan et al., Physical Chemistry Chemical Physics 18.10 (2016): 7141-7147.
    [26] I. Oftedal, Zeitschrift Für Krist. - Cryst. Mater. 66 (1928) 517–546.
    [27] Uher, Ctirad. "Skutterudites: Prospective novel thermoelectrics."
    Semiconductors and semimetals. Vol. 69. Elsevier, 2001. 139-253.
    [28] A. Kjekshus, T. Rakke, Acta Chem. Scand. A 28 (1974): 99-103.
    [29] Davide Beretta et al., Materials Science & Engineering R 138 (2019) 210–255
    [30] F.G. Aliev et. al., Zeitschrift für Physik B Condensed Matter 75.2 (1989):167-171.
    [31] Wei-Di Liu et al., Adv. Energy Mater. 2020, 10, 2000367
    [32] S Imam et al., Materials Today Physics 22 (2022): 100571.
    [33] Juan Li et al., Joule 2.5 (2018): 976-987.
    [34] Perumal, S., et al., Inorganic Chemistry Frontiers (2016) 3 (1), 125
    [35] Perumal, S., et al., Chemistry of Materials (2015) 27 (20), 7171
    [36] Bayikadi, K. S., et al., Journal of Materials Chemistry A (2020) 8 (10), 5332
    [37] Gelbstein, Y., and Davidow, J., Physical Chemistry Chemical Physics (2014) 16
    (37), 20120
    [38] Hong, M., et al., Advanced materials (2018) 30 (11), 1705942
    [39] Wu, L., et al., NPG Asia Materials (2017) 9 (1), e343
    [40] Srinivasan, B., et al., Materials (2018) 11 (11), 2237
    [41] Shuai, J., et al., Small (2020) 16 (13), 1906921
    [42] Srinivasan, B., et al., The Journal of Physical Chemistry C (2018) 122 (1), 227
    [43] Zheng, Z., et al., Journal of the American Chemical Society (2018) 140 (7), 2673
    [44] Li, J., et al., Chemistry of Materials (2017) 29 (2), 605
    [45] Shuai, J., et al., Materials Today Physics (2019) 9, 100094
    [46] Perumal, S., et al., Joule (2019) 3 (10), 2565
    [47] Gandhi, J. R., et al., CrystEngComm (2018) 20 (41), 6449
    [48] Perumal, S., et al., Chemistry of Materials (2017) 29 (24), 10426
    [49] Hong, M., et al., Advanced Energy Materials (2018) 8 (30), 1801837
    [50] Srinivasan, B., et al., Inorganic Chemistry Frontiers (2019) 6 (1), 63
    [51] Li, J., et al., Journal of the American Chemical Society (2018) 140 (47), 16190
    [52] Liu, Z., et al., Proceedings of the National Academy of Sciences (2018) 115 (21),
    5332
    [53] Hong, M., et al., Journal of the American Chemical Society (2018) 141 (4), 1742
    [54] Srinivasan, B., et al., Journal of Materials Chemistry A (2020) 8 (38), 19805
    [55] Gao, W., et al., Applied physics letters (2021) 118 (3), 033901
    [56] Sun, Q., et al., Advanced Energy Materials (2021) 11 (20), 2100544
    [57] Xiao-Lei Shi et al., Chem. Rev. 2020, 120, 7399−7515
    [58] Holgate, T. C. et al., J. Electron. Mater. 2015, 44, 1814−1821.
    [59] Zakrajsek, J. F. et al., In IEEE Aerospace Conference; IEEE, 2016; pp 1−10.
    [60] Eder, A. et al., In Second Thermoelectric Applications Workshop, US
    Department of Energy, 2011; pp 1−23.
    [61] P Mohan Kumar et al., Sci 2019, 1, 37
    Chapter 3
    [1] Solid-state physics, Neil W Ashcroft, N David Mermin, ISBN13: 978-0030839931
    [2] www.ulvac.com/components/Thermal-Instruments/Thermoelectric-
    Testers/ZEM-3-Series
    [3] https://www.netzsch-thermal-analysis.com/en/products-solutions/thermal-
    diffusivity conductivity/lfa-457-microflash/
    [4] Giannozzi, P., et al., Journal of Physics: Condensed matter (2009) 21 (39), 395502
    [5] Vanderbilt, D., Physical Review B (1990) 41 (11), 7892
    [6] Perdew, J. P., et al., Physical review letters (1996) 77 (18), 3865
    [7] Monkhorst, H. J., and Pack, J. D., Physical Review B (1976) 13 (12), 5188
    Chapter 4
    [1] Perumal, S., et al., Chemistry of Materials (2015) 27 (20), 7171
    [2] Sist, M., et al., Physical Review B (2018) 97 (9), 094116
    [3] Liu, Z., et al., Proceedings of the National Academy of Sciences (2018) 115 (21),
    5332
    [4] Qiu, Y., et al., Journal of Materials Chemistry A (2019) 7 (46), 26393
    [5] Bayikadi, K. S., et al., Journal of Materials Chemistry A (2020) 8 (10), 5332
    [6] Liu, W. D., et al., Advanced Energy Materials (2020) 10 (19), 2000367
    [7] Zhu, T. et al., ACS applied materials & interfaces (2019) 11 (44), 41472
    [8] Khasimsaheb, B., et al., Current Applied Physics (2017) 17 (2), 306
    [9] Sun, Q., et al., Advanced Energy Materials (2021) 11 (20), 2100544
    [10] Guo, D., et al., The Journal of Physical Chemistry C (2013) 117 (41), 21597
    [11] Al Rahal Al Orabi, R., et al., Chemistry of Materials (2016) 28 (1), 376
    [12] Ming, H. et al., ACS applied materials & interfaces (2020) 12 (17), 19693
    [13] Xing, G., et al., Journal of Applied Physics (2018) 123 (19), 195105
    [14] Snyder, G. J., and Toberer, E. S., Nature Materials (2008) 7 (2)
    [15] Agne, M. T., et al., Energy & Environmental Science (2018) 11 (3), 609
    [16] Xing, T., et al., Advanced materials (2021) 33 (17), 2008773
    [17] Yue, L., et al., ACS Applied Energy Materials (2019) 2 (4), 2596
    [18] Shuai, J., et al., Small (2020) 16 (13), 1906921
    [19] Srinivasan, B., et al., Journal of Materials Chemistry A (2020) 8 (38), 19805
    [20] Gao, W., et al., Applied physics letters (2021) 118 (3), 033901
    Chapter 5
    [1] Xiao-Lei Shi et al., Chem. Rev. 2020, 120, 7399−7515
    [2] S. Roychowdhury et al., Science 371, 722–727 (2021)
    [3] K. Hoang et al., Physical review letters 99.15 (2007): 156403.
    [4] R. Mohanraman et al., Journal of Materials Chemistry A 2.8 (2014): 2839-2844.
    [5] U. Sandhya Shenoy et al., Energy Advances (2022).
    [6] S. Imam et al., Materials Today Physics 22 (2022) 100571

    下載圖示
    QR CODE