研究生: |
陳昱勛 Chen, Yu-Hsun |
---|---|
論文名稱: |
高結晶性天然鱗片石墨用於鋁離子電池之電化學分析及機制研究 The Electrochemical Characterization and Mechanism Study of High-Crystalline Natural Flake Graphite Applied on Aluminum-Ion Battery |
指導教授: |
陳家俊
Chen, Chia-Chun |
學位類別: |
碩士 Master |
系所名稱: |
化學系 Department of Chemistry |
論文出版年: | 2016 |
畢業學年度: | 104 |
語文別: | 中文 |
論文頁數: | 85 |
中文關鍵詞: | 鋁離子電池 、XRD 、Raman 、XAS |
英文關鍵詞: | Aluminum ion battery, XRD, Raman, XAS |
DOI URL: | https://doi.org/10.6345/NTNU202203550 |
論文種類: | 學術論文 |
相關次數: | 點閱:190 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著能源問題日漸嚴重,對於電能儲存的開發越來越受到重視。次世代的電池目標是低成本、高充放電速率、高穩定性且具有高能量及功率密度。為了達到以上目標,我們發展出具有高安全性的鋁離子電池系統。鋁金屬的氧化還原由三個電子進行,所以鋁金屬能提供更高的能量密度,且具有無汙染等優點。
先前本團隊研究利用天然鱗片石墨作為鋁離子電池的陰極,具有高電量、高電位平台,且在長圈數的循環下電量並無衰退,而本研究主要探討為鋁離子電池在進行充放電的過程中,石墨與氯鋁酸鹽離子間的關係,因此利用各種不同電位下探討其中的反應機制,藉由in-situ XRD、in-situ Raman、XAS等分析證明氯鋁酸鹽離子嵌入嵌出於石墨層間,最後再以用密度泛函理論(DFT)和第一計算來模擬AlCl4-陰離子與石墨間的行為表現。
另外,對鋁離子電池做參數的調整,例如改變石墨負載量、不同材質隔離膜及觀察在不同環境溫度下對鋁離子電池的電化學表現。
With the energy issues, electrochemical energy storage is an important issue for future technology development. The goals of the next generational battery are low cost, high-rate charging, high stability, high energy and power density. To meet this requirement, we developed aluminum ion battery which is a high safety and low cost battery system. With three-electron redox anode reaction, aluminum ion battery has higher energy and power density. For the environmental issues, the battery system is without pollution and poison.
In our early work, we used natural flake graphite as cathode for AIB. The performance of the graphite cathode was high capacity, high voltage plateau and without decay after thousands of cycles. The purpose of this study was to investigate the interaction of AlCl4- and graphite cathode during charging. We dug deeper on the reaction mechanisms with in situ XRD, in-situ Raman and XAS. Finally, we used DFT and first principle method to confirm the reaction between graphite and AlCl4-.
Besides, we observed the performance of AIB with different graphite loading, different kind of separators and charging at various temperatures.
參考文獻
1.王華麗;白瑩;陳實;吳鋒;吳川; 室溫鋁二次電池及其關鍵材料 [J];化學進展;2013年08期
2.Hjuler H A, Berg R W, Bierrum N J. Secondary Aluminium-Metal Sulfide International Power Sources Symposium, 1985. 1-21
3.Seddon, K. R. J. Chem. Tech. Biotechnol. Ionic Liquids for Clean Technology,1997, 68, 351
4.Seddon, K. R., Stark, A., & Torres, M-J. (2000). Influence of chloride, water, and organic solvents on the physical properties of ionic liquids. Pure and Applied Chemistry , 72(12),2275-2287.
5.Electropaedia, Chester, U.K., http://www.mpoweruk.com/
geothermal_energy.htm
6.Wasserscheid, P.; Keim, W. Angew. Chem. Int. Ed. Ionic Liquids-New "Solutions" for Transition Metal Catalysis, 2000, 39, 3772.
7.陳昕(Chen X), 司士輝(Si S H), 张漪麗(Zhang Y L). 應用化學(Chinese Journal of Applied Chemistry), 2004, 21(6): 613-616
8.Kazuhiro N, Eishi E, Kenichi T. Aluminum non-aqueous electrolyte secondary cell , US 5554458, 1996
9.Brown G M, The invention is a continuation-in-part of US. patent application , US 12/895487, 2010
10.Jayaprakash N, Das S K, Archer L A. The rechargeable aluminium-ion battery, Chem. Commun., 2011, 47: 12610-12612
11.岳競慧(Yue J H), 高利珍(Gao L Z), 岳秀萍(Yue X P), 趙宇光(Zhao Y G). 能源與節能(Energy and Energy Conservation), 2011, 2: 68-70
12.Qingfeng Li, Niels J Bjerrum, Aluminum as anode for energy storage and conversion: a review J. Power Sources, 2002, l10: 1-10
13.Albert I J, Kulandainathan M A, Ganesan M. , Characterisation of different grades of commercially pure aluminium as prospective galvanic anodes in saline and alkaline battery electrolyte J. Appl. Electrochem., 1989, 19: 547-559
14.Despic A, Radosevic J, Dabic P. Abnormal yields of hydrogen and the mechanism of its evolution during cathodic polarization of aluminium , Electrochem. Acta, 1990, 35: 1743-1746
15.Tuck C D S, Hunter J A, Scomans G M. J. The Electrochemical Behavior of Al‐Ga Alloys in Alkaline and Neutral Electrolytes, Electrochem. Soc., 1987, 134: 2970-2981
16.M. Kliskić, J. Radosević, L.J. Aljinovic Behaviour of Al–Sn alloy on the negative side of the open-circuit potential J. Appl. Electrochem., 24 (1994), p. 814
17.Paranthaman,MP.; Brown, G.M.; Sun, X.; Nanda, J.; Manthiram, A.; A Transformational, High Energy Density Secondary Aluminum Ion Battery In 218th ECS Meeting;Las Vegas, NV, Oct 10–15, 2010; Electrochemical Society: Pennington, NJ, 2010; p 314, 2010
18.Xiang, G.; Wang, Y.G.; Li, J.; Zhuang, J.; Wang, X. Surface-specific interaction by structure-match confined pure high-energy facet of unstable TiO₂(B) polymorph. Sci. Rep. 2013, 3, 1411
19.Jayaprakash, N., Das, S. K. & Archer, L. A. The rechargeable aluminum-ion battery.Chem. Commun. 47, 12610–12612 (2011)
20.Wang, H.; Bai, Y.; Chen, S.; Luo, X.; Wu, C.; Wu, F.; Lu, J.; Amine, K.Binder-Free V2O5 Cathode for Greener Rechargeable Aluminum Battery ACS Appl. Mater. Interfaces 2015, 7, 80– 84
21.Chiku, M.; Takeda, H.; Matsumura, S.; Higuchi, E.; Inoue, H .Amorphous Vanadium Oxide/Carbon Composite Positive Electrode for Rechargeable Aluminum Battery. ACS Appl. Mater. Interfaces 2015, 7,24385– 24389
22.Koji Suto,Akiyoshi Nakata, Haruno Murayama, Toshiro Hirai, Jun-ichi Yamaki,and Zempachi Ogumi, Journal of The Electrochemical Society, 163 (5) A742-A747 (2016)
23.N. Koura, A Preliminary Investigation for an Al / AlCl3 ‐ NaCl / FeS2 Secondary Cell , J. Electrochem. Soc. 127 (1980) 1529-1531
24.Takuya Mori, Yuki Orikasa , Koji Nakanishi , Chen Kezheng , Masashi Hattori, Discharge/charge reaction mechanisms of FeS2 cathode material for aluminum rechargeable batteries at 55°C , Journal of Power Sources 313 (2016) 9-14
25.N. Takami, N. Koura, Anodic sulfidation of FeS electrode in a NaCl saturated AlCl3-NaCl melt, Electrochim. Acta 33 (1988) 1137-1142.
26.Gen, L.; Lv, G.; Xing, X.; Guo, Reversible Electrochemical Intercalation of Aluminum in Mo6S8. , J.Chem Mater.
2015, 27, 4926– 4929
27.Boeun Leea,b, Hae Ri Leea, Taeeun Yimc, Investigation on the Structural Evolutions during the Insertion of Aluminum Ions into Mo6S8 Chevrel Phase, J Electrochemical Society, 2016
28.Hudak, N. S. Chloroaluminate-Doped Conducting Polymers as Positive Electrodes in Rechargeable Aluminum Batteries J. Phys. Chem. C 2014, 118, 5203– 5215
29.X. G. Sun, Z. H. Bi, H. S. Liu, Y. X. Fang, C. A. Bridges, M. P. Paranthaman, S. Dai and G. M. Brown, A high performance hybrid battery based on aluminum anode and LiFePO4 cathode, Chem. Commun., 2016, 52, 1713–1716
30.Rani, J.V.; Kanakaiah, V.; Dadmal, T.; Rao, M.S.; Bhavanarushi, Fluorinated Natural Graphite Cathode for Rechargeable Ionic Liquid Based Aluminum–Ion Battery S. J.Electrochem. Soc. 2013, 160, A1781–A1784
31.Lin, M.; Gong, M.; Lu, B.; Wu, Y.; Wang, D.; Guan, M.; Angell, M.; Chen, C.; Yang, J.; Hwang, B.; Dai, H.An ultrafast rechargeable aluminium-ion battery Nature 2015, 520, 324– 328
32.Zhang, S.S. A review on the separators of liquid electrolyte Li-ion batteries, J. Power Sources, 2007, 164, 351–364.
33.張國馨、Dmitry Belov、謝登存﹐電池隔離膜之應用與安全對策﹐工研院材化所, 2008
34.莫定山,拉曼光譜原理及應用,崑山科技大學
35.Joachim Stöhr, In NEXAFS Spectroscopy, Springer-Verlag, Ed. Joachim Stöhr (1992).
36.Hardwick, L.J. et al. An in situ Raman study of the intercalation of supercapacitor-type electrolyte into microcrystalline graphite. Electrochimica Acta 52, 675-680 (2006).
37.Alsmeyer, D.C. & McCreery, R.L. In situ Raman monitoring of electrochemical graphite intercalation and lattice damage in mild aqueous acids. Analytical Chemistry 64, 1528-1533 (1992).
38.Huang, W. & Frech, R. In Situ Roman Studies of Graphite Surface Structures during Lithium Electrochemical Intercalation. Journal of The Electrochemical Society 145, 765-770 (1998).
39.Dresselhaus, M. & Dresselhaus, G. Intercalation compounds of graphite. Advances in Physics 30, 139-326 (1981).
40.Lin, Y.-S. et al. Measurement and prediction of the NEXAFS spectra of pyrimidine and purine and the dissociation following the core excitation. Chemical Physics Letters 636, 146-153 (2015).
41.Asanov, I.P. et al. Charge-induced formation of thin conducting layers on fluorinated graphite surface. Carbon 82, 446-458 (2015).
42.Vanderbilt, D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Physical Review B 41, 7892 (1990).
43.Blöchl, P.E. Projector augmented-wave method. Physical Review B 50, 17953 (1994).
44.Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Physical Review B 54, 11169 (1996).
45.R. Yi, J. Zai, F. Dai, M.L. Gordin, D. Wang, Dual conductive network-enabled graphene/Si–C composite anode with high areal capacity for lithium-ion batteries, (2014), pp. 211–218
46.Aikens D . [J]. 1983,60(01)
47.Arora, P.; Zhang, Z. Battery separators, M. Chem.
Rev. 2004, 104, 4419
48.D. Pradhan, R.G. Reddy Metall. Mater. Trans. B, Dendrite-Free Aluminum Electrodeposition from AlCl3-1-Ethyl-3-Methyl-
Imidazolium Chloride Ionic Liquid Electrolytes,43B (2012), p. 519
49.Yue G, Zhang S, Zhu Y, Lu X, Li S, Li Z, A Promising Method for Electrodeposition of Aluminium on Stainless Steel in Ionic Liquid, (2009) AICHE J 55:783–796
50.魏川育, 高效率且高充放電速率之鋁離子二次電池的研究與電化學分析, 國立臺灣師範大學化學所, 2015年