研究生: |
吳瑋仁 Wu, Wei-Ren |
---|---|
論文名稱: |
以石墨烯量子點調制表面電漿子能量於生物感測器之研究 Modulation of Surface Plasmon Resonance Energy Using Graphene Quantum Dots on Biosensors Application |
指導教授: |
邱南福
Chiu, Nan-Fu |
學位類別: |
碩士 Master |
系所名稱: |
光電工程研究所 Graduate Institute of Electro-Optical Engineering |
論文出版年: | 2018 |
畢業學年度: | 107 |
語文別: | 中文 |
論文頁數: | 101 |
中文關鍵詞: | 石墨烯量子點 、金奈米粒子 、表面電漿子共振 、胰臟癌腫瘤指標物 |
英文關鍵詞: | Graphene quantum dots (GQDs), Gold nanoparticles (AuNPs), Surface plasmon resonance (SPR), Carbohydrate Antigen 19-9 (CA19-9) |
DOI URL: | http://doi.org/10.6345/THE.NTNU.EPST.019.2018.E08 |
論文種類: | 學術論文 |
相關次數: | 點閱:185 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
疾病的早期發現早期治療,是近代醫學的檢測與診斷的方向,生物醫學晶片能夠提供快速、準確、低成本的檢測,以實現精準醫療的目標。本研究提出利用石墨烯量子點(GQDs)結合表面電漿子共振(SPR)技術來開發能夠快速檢測胰臟癌疾病的生物晶片。
石墨烯量子點是二維的新穎材料,具有良好的生物相容性與優異的光致發光之螢光效益。因此本研究使用水熱合成法自行合成石墨烯量子點,並進行光學特性分析、元素分析以及形態分析驗的驗證,證實透過材料顆粒大小可以調控光致發光的螢光顏色。在石墨烯量子點修飾於金奈米粒子的實驗中,發現石墨烯量子點和金奈米粒子之間的交互作用,能誘導表面電漿子的能量轉移特性產生耦合現象,並藉由調制表面電漿子能量來控制螢光的色變,開發螢光生物感測技術。
石墨烯量子點藉由表面電漿子共振技術檢測生物分子間的交互作用,進行檢測胰臟癌腫瘤指標物CA19-9之免疫反應的實驗,透過快速低成本的檢測技術進而開發高靈敏度及高準確性之快速篩檢的生物感測器。本實驗最低檢測可達約10 Unit/ml的變化,且線性迴歸係數可達R2 = 0.9,透過此檢測技術即能快速診斷胰臟癌。由此實驗可證明石墨烯量子點具有良好的生物相容性,結合生物晶片亦能提高檢測的靈敏度,並能夠用於開發具有專一性的快速篩檢的癌症生物感測晶片。
Early detection of early detection of disease is the direction of detection and diagnosis of modern medicine. Biomedical chips provide fast, accurate, and low-cost detection for precise medical goals. This study proposes the use of graphene quantum dots (GQDs) combined with surface plasmon resonance (SPR) technology to develop biochips capable of rapidly detecting pancreatic cancer diseases.
Graphene quantum dots are two-dimensional novel materials with good biocompatibility and excellent photoluminescence fluorescence benefits. Therefore, this study used hydrothermal synthesis to synthesize graphene quantum dots and performed optical property analysis, elemental analysis and morphological analysis to verify that the particle size of the material can regulate the fluorescent color of photoluminescence. In the experiment of graphene quantum dots modified in gold nanoparticles, it was found that the interaction between graphene quantum dots and gold nanoparticles can induce the coupling phenomenon of the energy transfer characteristics of surface plasmons. Fluorescent biosensing technology was developed by modulating the surface plasmonic energy to control the color change of the fluorescent light.
Experiments were carried out to detect the immune response between pancreatic cancer tumor marker CA19-9 by using graphene quantum dots to detect the interaction between biomolecules by surface plasmon resonance technique. Develop high-sensitivity and high-accuracy biosensors for rapid screening through fast and low-cost detection technology. The minimum detection of this experiment can reach about 10 Unit/ml, and the linear regression coefficient can reach R2 = 0.9 . This detection technique can quickly diagnose pancreatic cancer. This experiment proves that the graphene quantum dots have good biocompatibility, and the biochip can also improve the sensitivity of detection, and can be used to develop a cancer screening biosensor chips with specific rapid screening.
[1] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, et al, “Electric Field Effect in Atomically Thin Carbon Films,” Science, 2004, 306, 666-669.
[2] J. Zhao, G. Chen, L. Zhu and G. Li, “Graphene quantum dots-based platform for the fabrication of electrochemical biosensors,” Electrochemistry Communications, 2011, 13, 31-33.
[3] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, et al, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature, 2005, 438, 197-200.
[4] S.Benítez-Martínez and M.Valcárcel, “Graphene quantum dots in analytical science,” Trends in Analytical Chemistry, 2015, 72, 93-113.
[5] X. Li, M. Rui, J. Song, et al, “Carbon and Graphene Quantum Dots for Optoelectronic and Energy Devices: A Review,” Adv. Funct. Mater., 2015, 25, 4929-4947.
[6] N. Chiu, S. Fan, C. Yang and T. Huang, “Carboxyl-functionalized graphene oxide composites as SPR biosensors with enhanced sensitivity for immunoaffinity detection,” Biosensors and Bioelectronics, 2017, 89, 370-376.
[7] 楊成都, “探討電化學表面電漿技術於即時監測與調控氧化石墨烯能隙之研究,” 國立臺灣師範大學光電科技研究所碩士論文, 2016.
[8] “BI生物感測器,” http://biosensingusa.com/technologies/surface-plasmon-resonance/surface-plasmon-resonance
[9] “台灣癌症基金會,” https://www.canceraway.org.tw/pagelist.asp?keyid=67
[10] X.G.Ni, X.F.Bai, Y.L.Mao, Y.F.Shao, J.X.Wu, Y.Shan, et al, “The clinical value of serum CEA, CA19-9, and CA242 in the diagnosis and prognosis of pancreatic cancer,” EJSO, 2005, 31, 164-169.
[11] A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nature Materials, 2007, 6, 183-191.
[12] Y. Zhu, S. Murali, W. Cai, X. Li, J. W. Suk, J. R. Potts and R. S. Ruoff, “Graphene and Graphene Oxide: Synthesis, Properties, and Applications,” Adv. Mater., 2010, 22, 3906-3924.
[13] A. K. Geim, “Graphene: Status and Prospects,” Science, 2009, 324, 1530-1534.
[14] D. R. Dreyer, S. Park, C. W. Bielawski and R. S. Ruof, “The chemistry of graphene oxide,” Chem. Soc. Rev., 2010, 39, 228-240.
[15] A. Mathkar, D. Tozier, P. Cox, P. Ong, C. Galande, K. Balakrishnan, A. L. M. Reddy and P. M. Ajayan, “Controlled, Stepwise Reduction and Band Gap Manipulation of Graphene Oxide,” J. Phys. Chem. Lett., 2012, 3, 986-991.
[16] S. Y. Toh, K. S. Loh, S. K. Kamarudin and W. R. W. Daud, “Graphene production via electrochemical reduction of graphene oxide: Synthesis and characterization,” Chemical Engineering Journal, 2014, 251, 422-434.
[17] S. Zhou, H. Xu, W. Gancd, Q. Yuan, “Graphene quantum dots: recent progress in preparation and fluorescence sensing applications,” RSC Adv., 2016, 6, 110775-110788.
[18] M. Bacon, S. J. Bradley and T. Nann, “Graphene Quantum Dots,” Part. Part. Syst. Charact., 2014, 31, 415-428.
[19] D. Pan, J. Zhang, Z. Li and M. Wu, “Hydrothermal Route for Cutting Graphene Sheets into Blue-Luminescent Graphene Quantum Dots,” Adv. Mater., 2010, 22, 734-738.
[20] “Graphene-Info,” https://www.graphene-info.com/graphene-quantum-dots
[21] X. Zhou, Y. Zhang, C. Wang, X. Wu, Y. Yang, B. Zheng, H. Wu, S. Guo and J. Zhang, “Photo-Fenton Reaction of Graphene Oxide: A New Strategy to Prepare Graphene Quantum Dots for DNA Cleavage,” ACS Nano, 2012, 6, 6592-6599.
[22] L. Tang, R. Ji, X. Cao, J. Lin, H. Jiang, X. Li, K. S. Teng, C. M. Luk, S. Zeng, J. Hao and S. P. Lau, “Deep Ultraviolet Photoluminescence of Water-Soluble Self-Passivated Graphene Quantum Dots,” ACS Nano, 2012, 6, 5102-5110.
[23] S. Zhuo, M. Shao and S. T. Lee, “Upconversion and Downconversion Fluorescent Graphene Quantum Dots: Ultrasonic Preparation and Photocatalysis,” ACS Nano, 2012, 6, 1059-1064.
[24] S. Zhu, J. Zhang, S. Tang, C. Qiao, L. Wang, H. Wang, et al, “Surface Chemistry Routes to Modulate the Photoluminescence of Graphene Quantum Dots: From Fluorescence Mechanism to Up‐Conversion Bioimaging Applications,” Adv. Funct. Mater., 2012, 22, 4732-4740.
[25] H. Razmi and R. M. Rezaei, “Graphene quantum dots as a new substrate for immobilization and direct electrochemistry of glucose oxidase: Application to sensitive glucose determination,” Biosensors and Bioelectronics, 2013, 41, 498-504.
[26] H. Zhao, Y. Chang, M. Liu, S. Gao, H. Yua and X. Quana, “A universal immunosensing strategy based on regulation of the interaction between graphene and graphene quantum dots,” Chem. Commun., 2013, 49, 234-236.
[27] S. Zhu, J. Zhang, C. Qiao, S. Tang, Y. Li, W. Yuan, B. Li, et al, “Strongly green-photoluminescent graphene quantum dots for bioimaging applications,” Chem. Commun., 2011, 47, 6858-6860.
[28] Y. Dong, C. Chen, X. Zheng, et al, “One-step and high yield simultaneous preparation of single- and multi-layer graphene quantum dots from CX-72 carbon black,” J. Mater. Chem., 2012, 22, 8764-8766.
[29] V. Gupta, N. Chaudhary, R. Srivastava, G. D. Sharma, R. Bhardwaj and S. Chand, “Luminscent Graphene Quantum Dots for Organic Photovoltaic Devices,” J. Am. Chem. Soc., 2011, 133, 9960-9963.
[30] M. Bacon, S. J. Bradley and T. Nann, “Graphene Quantum Dots,” Part. Part. Syst. Charact., 2014, 31, 415-428.
[31] Y. Dong, J. Shao, C. Chen, et al, “Blue luminescent graphene quantum dots and graphene oxide prepared by tuning the carbonization degree of citric acid,” CARBON, 2012, 50, 4738-4743.
[32] Y. Xu, H. Bai, G. Lu, C. Li and G. Shi, “Flexible Graphene Films via the Filtration of Water-Soluble Noncovalent Functionalized Graphene Sheets,” J. Am. Chem. Soc., 2008, 130, 5856-5857.
[33] D. Pan, S. Wang, B. Zhao, M. Wu, H. Zhang, Y. Wang and Z. Jiao, “Li Storage Properties of Disordered Graphene Nanosheets,” Chem. Mater., 2009, 21, 3136-3142.
[34] G. G. Park, Y. J. Sohn, S. D. Yim, T. H. Yang, Y. G. Yoon, W. Y. Lee, K. Eguchi and C. S. Kim, “Adoption of nano-materials for the micro-layer in gas diffusion layers of PEMFCs,” J. Power Sources, 2006, 163, 113-118.
[35] P. J. F. Harris, “New Perspectives on the Structure of Graphitic Carbons,” Crit. Rev. Solid State Mater. Sci., 2005, 30, 235-253.
[36] J. Shen, Y. Zhu, C. Chen, X. l. Yang and C. Li, “Facile preparation and upconversion luminescence of graphene quantum dots,” Chem. Commun., 2011, 47, 2580-2582.
[37] S. H. Jin, D. H. Kim, G. H. Jun, S. H. Hong and S. Jeon, “Tuning the Photoluminescence of Graphene Quantum Dots through the Charge Transfer Effect of Functional Groups,” ACS Nano, 2013, 7, 1239-1245.
[38] J. Zong, Y. Zhu, X. Yang, J. Shena and C. Lia, “Synthesis of photoluminescent carbogenic dots using mesoporous silica spheres as nanoreactors,” Chem. Commun., 2011, 47, 764-766.
[39] S. Zhu, J. Zhang, X. Liu, B. Li, X. Wang, S. Tang, Q. Meng, Y. Li, C. Shi, R. Hua and B. Yang, “Graphene quantum dots with controllable surface oxidation, tunable fluorescence and up-conversion emission,” RSC Adv., 2012, 2, 2717-2720.
[40] Y. Li, Y. Hu, Y. Zhao, G. Shi, L. Deng, Y. Hou and L. Qu, “An Electrochemical Avenue to Green-Luminescent Graphene Quantum Dots as Potential Electron-Acceptors for Photovoltaics,” Adv. Mater., 2011, 23, 776-780.
[41] H. Chen, M. B. Müller, K. J. Gilmore1, G. G. Wallace and D. Li, “Mechanically Strong, Electrically Conductive, and Biocompatible Graphene Paper,” Adv. Mater., 2008, 20, 3557-3561.
[42] X. Xie, L. Qu, C. Zhou, Y. Li, J. Zhu, H. Bai, G. Shi and L. Dai, “An Asymmetrically Surface-Modified Graphene Film Electrochemical Actuator,” ACS Nano, 2010, 4, 6050-6054.
[43] J. Lee, K. Kim, W. I. Park, B. H. Kim, J. H. Park, T. He. Kim, S. Bong, C. H. Kim, G. S. Chae, M. Jun, Y. Hwang, Y. S. Jung and S. Jeon, “Uniform Graphene Quantum Dots Patterned from Self-AssembledSilica Nanodots,” Nano Lett., 2012, 12, 6078-6083.
[44] N. Mohanty, D. Moore, Z. Xu, T.S. Sreeprasad, A. Nagaraja, A. A. Rodriguez and V. Berry, “Nanotomy-based production of transferable and dispersible graphene nanostructures of controlled shape and size,” Nature Commun., 2012, 3, 844.
[45] W. S. Hu. Jr and R. E. Offeman, “Preparation of Graphitic Oxide,” J. Am. Chem. Soc., 1958, 80,1339.
[46] X. An, T. Simmons, R. Shah, C. Wolfe, K. M. Lewis, M. Washington, S. K. Nayak, S. Talapatra and S. Kar, “Stable aqueous dispersions of noncovalently functionalized graphene from graphite and their multifunctional high-performance applications,” Nano Lett., 2010, 10, 4295-4301.
[47] N. Behabtu, J. R. Lomeda, M. J. Green, et al, “Spontaneous high-concentration dispersions and liquid crystals of graphene,” Nature Nanotech., 2010, 5, 406-411.
[48] D. Li, M. B. Müller, S. Gilje, R. B. Kaner and G. G. Wallace “Processable aqueous dispersions of graphene nanosheets,” Nature Nanotechnology, 2008, 3, 101-105.
[49] B. Park, S. J. Kim, J. S. Sohn, M. S. Nam, S. Kang and S. C. Jun, “Surface plasmon enhancement of photoluminescence in photo-chemically synthesized graphene quantum dot and Au nanosphere,” Nano Research, 2016, 9, 1866-1875.
[50] T. Ogi, H. Iwasaki, K. Aishima, et al, “Transient nature of graphene quantum dot formation via a hydrothermal reaction,” RSC Adv., 2014, 4, 55709-55715.
[51] J. Feng, H. Dong, L. Yu and L. Dong, “The optical and electronic properties of graphene quantum dots with oxygen-containing groups: a density functional theory study,” J. Mater. Chem. C, 2017, 5, 5984-5993.
[52] X. Li, X. Wang, L. Zhang, S. Lee and H. Dai, “Chemically Derived, Ultrasmooth Graphene Nanoribbon Semiconductors,” SCIENCE, 2008, 319, 1229-1231.
[53] L. A. Ponomarenko, F. Schedin, M. I. Katsnelson, R. Yang, E. W. Hill, K. S. Novoselov and A. K. Geim, “Chaotic Dirac Billiard in Graphene Quantum Dots,” SCIENCE, 2008, 320, 356-358.
[54] L. Li, G. Wu, et al, “Focusing on luminescent graphene quantum dots: current status and future perspectives,” Nanoscale, 2013, 5, 4015-4039.
[55] “紫外光譜原理 (Theory of Ultraviolet-Visible (UV-Vis) Spectroscopy),” http://www.chem.ucla.edu/~bacher/UVvis/uv_vis_tetracyclone.html.html
[56] J. Peng, W. Gao, B. K. Gupta, Z. Liu, et al, “Graphene Quantum Dots Derived from Carbon Fibers,” Nano Lett., 2012, 12, 844-849.
[57] F. A. Permatasari, A. H. Aimon, F. Iskandar, T. Ogi and K. Okuyama, “Role of C–N Configurations in the Photoluminescence of Graphene Quantum Dots Synthesized by a Hydrothermal Route,” Scientific Reports, 2016, 6, 21042.
[58] L. L. Li, J. Ji, R. Fei, C. Z. Wang, Q. Lu, J. R. Zhang, L. P. Jiang and J. J. Zhu, “A Facile Microwave Avenue to Electrochemiluminescent Two-Color Graphene Quantum Dots,” Adv. Funct. Mater., 2012, 22, 2971-2979.
[59] X. Yan, X. Cui, B. Li and L. S. Li, “Large, Solution-Processable Graphene Quantum Dots as Light Absorbers for Photovoltaics,” Nano Lett., 2010, 10, 1869-1873.
[60] G. Eda, Y. Y. Lin, C. Mattevi, H. Yamaguchi, H. A. Chen, I. S. Chen, C. W. Chen and M. Chhowalla, “Blue photoluminescence from chemically derived graphene oxide,” Adv. Mater., 2010, 22, 505-509.
[61] C. WC and N. S, “Quantum dot bioconjugates for ultrasensitive nonisotopic detection,” Science, 1998, 281, 2016-2018.
[62] X. Michalet, F. F. Pinaud, L. A. Bentolila, J. M. Tsay, S. Doose, J. J. Li, G. Sundaresan, A. M. Wu, S. S. Gambhir and S. Weiss, “Quantum Dots for Live Cells, in Vivo Imaging, and Diagnostics,” Science, 2005, 307, 538-544.
[63] A. M. Smith and S. Nie, “Semiconductor Nanocrystals: Structure, Properties, and Band Gap Engineering,” Acc. Chem. Res., 2010, 43, 190-200.
[64] S. Kim, S. W. Hwang, M. K. Kim, D. Y. Shin, et al, “Anomalous Behaviors of Visible Luminescence from Graphene Quantum Dots: Interplay between Size and Shape,” ACS Nano, 2012, 6, 8203-8208.
[65] Q. Mei, K. Zhang, G. Guan, B. Liu, S. Wang and Z. Zhang, “Highly efficient photoluminescent graphene oxide with tunable surface properties,” Chem. Commun., 2010, 46, 7319-7321.
[66] Z. X. Gan, S. J. Xiong, X. L. Wu, C. Y. He, J. C. Shen and P. K. Chu, “Mn2+-Bonded Reduced Graphene Oxide with Strong Radiative Recombination in Broad Visible Range Caused by Resonant Energy Transfer,” Nano Lett., 2011, 11, 3951-3956.
[67] M. Li, S. K. Cushing, X. Zhou, S. Guo and N. Wu, “Fingerprinting photoluminescence of functional groups in graphene oxide,” J. Mater. Chem., 2012, 22, 23374-23379.
[68] S. K. Das, C. M. Luk, W. E. Martin, L. Tang, D. Y. Kim, S. P. Lau and C. I. Richards, “Size and Dopant Dependent Single Particle Fluorescence Properties of Graphene Quantum Dots,” J. Phys. Chem. C, 2015, 119, 17988-17994.
[69] S. K. Cushing, M. Li, F. Huang and N. Wu, “Origin of Strong Excitation Wavelength Dependent Fluorescence of Graphene Oxide,” ACS Nano, 2014, 8, 1002-1013.
[70] P. Zheng and N. Wu, “Fluorescence and Sensing Applications of Graphene Oxide and Graphene Quantum Dots: A Review,” Chem. Asian J., 2017, 12, 2343-2353.
[71] X. T. Zheng, A. Than, A. Ananthanaraya, D. H. Kim and P. Chen, “Graphene Quantum Dots as Universal Fluorophores and Their Use in Revealing Regulated Trafficking of Insulin Receptors in Adipocytes,” ACS Nano, 2013, 7, 6278-6286.
[72] Z. Qian, J. Ma, X. Shan, L. Shao, J. Zhou, J. Chena and H. Feng, “Surface functionalization of graphene quantum dots with small organic molecules from photoluminescence modulation to bioimaging applications: an experimental and theoretical investigation,” RSC Adv., 2013, 3, 14571-14579.
[73] R. B. Xie, Z. F. Wang, W. Zhou, Y. T. Liu, L. Z. Fan, Y. C. Li and X. H. Li, “Graphene quantum dots as smart probes for biosensing,” Anal. Methods, 2016, 8, 4001-4016.
[74] S. H. Li, Y. C. Li, J. Cao, J. Zhu, L. Z. Fan and X. H Li, “Sulfur-Doped Graphene Quantum Dots as a Novel Fluorescent Probe for Highly Selective and Sensitive Detection of Fe3+,” Anal. Chem., 2014, 86, 10201-10207.
[75] R. H. Guo, S. X. Zhou, Y. C. Li, X. H. Li, L. Z. Fan and N. H. Voelcker, “Rhodamine-Functionalized Graphene Quantum Dots for Detection of Fe3+ in Cancer Stem Cells,” ACS Appl. Mater. Interfaces, 2015, 7, 23958-23966.
[76] J. Li , S. J. Guo and E. Wang, “Recent advances in new luminescent nanomaterials for electrochemiluminescence sensors,” RSC Adv., 2012, 2, 3579-3586.
[77] H. F. Zhao, R. P. Liang, J. W. Wang and J. D. Qiu, “A dual-potential electrochemiluminescence ratiometric approach based on graphene quantum dots and luminol for highly sensitive detection of protein kinase activity,” Chem. Commun., 2015, 51, 12669-12672.
[78] Y. T. Yan, Q. Liu, X. J. Du, J. Qian, H. P Mao and K. Wang, “Visible light photoelectrochemical sensor for ultrasensitive determination of dopamine based on synergistic effect of graphene quantum dots and TiO2 nanoparticles,” Analytica Chimica Acta, 2015, 853, 258-264.
[79] X. Y. Qin, W. B. Lu, A. M. Asiri, A. O. A. Youbi, X. Sun, “Green, low-cost synthesis of photoluminescent carbon dots by hydrothermal treatment of willow bark and their application as an effective photocatalyst for fabricating Au nanoparticles-reduced graphene oxide nanocomposites for glucose detection,” Catal. Sci. Technol., 2013, 3, 1027-1035.
[80] H. J. Shin, W. M. Choi, D, Choi, G, H, Han, S. M. Yoon, H. K. Park, S. W. Kim, Y. W. Jin, S. Y. Lee, J. M. Kim, J. Y. Choi and Y. H. Lee, “Control of Electronic Structure of Graphene by Various Dopants and Their Effects on a Nanogenerator,” J. Am. Chem. Soc., 2010, 132, 15603-15609.
[81] F. Güneş, H. J. Shin, C. Biswas, G. H. Han, E. S. Kim, S. J. Chae, J. Y. Cho and Y. H. Lee, “Layer-by-Layer Doping of Few-Layer Graphene Film,” ACS Nano, 2010, 4, 4595-4600.
[82] H. Schmidbaur and A. Schier, “A briefing on aurophilicity,” Chem. Soc. Rev., 2008, 37, 1931-1951.
[83] H. Schmidbaur and A. Schier, “Aurophilic interactions as a subject of current research: an up-date,” Chem. Soc. Rev., 2012, 41, 370-412.
[84] R. W. Wood, “On a remarkable case of uneven distribution of light in a diffraction grating spectrum,” Pro. Phys. Soc. London, 1902, 18, 267-275.
[85] A. Sommerfeld, “Über die Ausbreitung der Wellen in der drahtlosen Telegraphie,” Annalen Der Physik, 1909, 333, 665-736.
[86] E. Kretschmann, “Die bestimmung optischer konstanten von metallen durch anregung von oberflächenplasmaschwingungen,” Z. Phys., 1971, 241, 313-324.
[87] A. Otto, “Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection,” Z. Phys., 1968, 216, 398-410.
[88] N. F. Chiu, S. Y. Fan, C. D Yang and T. Y. Huang, “Carboxyl-functionalized graphene oxide composites as SPR biosensors with enhanced sensitivity for immunoaffinity detection,” Biosens Bioelectron, 2017, 89, 370-376.
[89] E. Petryayeva and U. J. Krull, “Localized surface plasmon resonance: Nanostructures, bioassays and biosensing—A review,” Analytica Chimica Acta, 2011, 706, 8-24.
[90] K. A. Willets and R. P. V. Duyne, “Localized Surface Plasmon Resonance Spectroscopy and Sensing,” Annual Review of Physical Chemistry, 2007, 58, 267-297.
[91] 顏昱捷, “主動式色變電漿子可視化生醫感測晶片之研發,” 國立臺灣師範大學光電科技研究所碩士論文, 2017.
[92] C. Nylander, B. Liedberg and T. Lind, “Gas detection by means of surface plasmon resonance,” Sensors and Actuators, 1982, 3, 79-88.
[93] J. Homola, I. Koudela and Si. S. Yee, “Surface plasmon resonance sensors based on diffraction gratings and prism couplers: sensitivity comparison,” Sensors and Actuators B, 1999, 54, 16-24.
[94] R. Heinz, “Surface Plasmons on Smooth and Rough Surfaces and on Gratings,” Springer Tracts in Modern Physics, 1988, 111.
[95] Y. Chen, K. Munechika, I. J. L. Plante, Andrea M. Munro, Sara E. Skrabalak, Younan Xia and David S. Ginger, “Excitation enhancement of CdSe quantum dots by single metal nanoparticles,” Appl. Phys. Lett., 2008, 93, 053106-1-053106-3.
[96] O. Kulakovich, N. Strekal, A. Yaroshevich, S. Maskevich, S. Gaponenko, I. Nabiev, U. Woggon and M. Artemyev, “Enhanced Luminescence of CdSe Quantum Dots on Gold Colloids,” Nano Lett., 2002, 2, 1449-1452.
[97] Y. P. Hsieh, C. T. Liang, Y. F. Chen, C. W. Lai and P. T. Chou, “Mechanism of giant enhancement of light emission from Au/CdSe nanocomposites,” Nanotechnology, 2007, 18, 415707(4pp).
[98] S. Raimondi, A. B. Lowenfels, A. M. Morselli-Labate, P. Maisonneuve and R. Pezzilli, “Pancreatic cancer in chronic pancreatitis; aetiology, incidence, and early detection,” Best Practice & Research Clinical Gastroenterology, 2010, 24, 349-358.
[99] “美國癌症協會,” https://www.cancer.org/
[100] K. Baryeh and G. D. Liu, “Development of quantitative immunochromatographic assay for rapid and sensitive detection of carbohydrate antigen 19-9 (CA 19-9) in human plasma,” Journal of Pharmaceutical and Biomedical Analysis, 2017, 146, 285-291.
[101] B. C. D. Villano, S. Brennan, P. Brock, C. Bucher, V. Llu, M. McClure, B. Rake, S. Space, B. Westrick, H. Schoemaker and V. R. Zurawski, “Radioimmunometric assay for a monoclonal antibody-defined tumor marker, CA 19-9,” Clin Chem, 1983, 29,549-552.
[102] H. Zhua, G. C. Fan, E. S. Abdel-Halim, J. R. Zhang and J. J. Zhu, “Ultrasensitive photoelectrochemical immunoassay for CA19-9 detection based on CdSe@ZnS quantum dots sensitized TiO2NWs/Au hybrid structure amplified by quenching effect of Ab2@V2+ conjugates,” Biosensors and Bioelectronics, 2016, 77, 339-346.
[103] J. H. Granger, M. C. Granger, M. A. Firpo, S. J. Mulvihill and M. D. Porter, “Toward development of a surface-enhanced Raman scattering (SERS)-based cancer diagnostic immunoassay panel,” Analyst, 2013, 138, 410-416.
[104] J. W. Chung, R. Bernhardt and J. C. Pyun, “Additive assay of cancer marker CA 19-9 by SPR biosensor,” Sensors and Actuators B, 2006, 118, 410-416.
[105] B. X. Gu, C. X. Xu, C. Yang, S. Q. Liu and M. L Wang, “ZnO quantum dot labeled immunosensor for carbohydrate antigen 19-9,” Biosensors and Bioelectronics, 2011, 26, 2720-2723.
[106] F. Yang, Z. H. Yang, Y. Zhuo, Y. Q. Chai and R. Yuan, “Ultrasensitive electrochemical immunosensor for carbohydrate antigen 19-9 using Au/porous graphene nanocomposites as platform and Au@Pd core/shell bimetallic functionalized graphene nanocomposites as signal enhancers,” Biosensors and Bioelectronics, 2015, 66, 356-362.
[107] K. Baryeh, S. Takalkar, M. Lund and G. D. Liu, “Development of quantitative immunochromatographic assay for rapid and sensitive detection of carbohydrate antigen 19-9 (CA 19-9) in human plasma,” Journal of Pharmaceutical and Biomedical Analysis, 2017, 146, 285-291.
[108] C. W. Chang, P. H. Chen, S. H. Wang, S. Y. Hsu, W. T. Hsu, C. C. Tsai, P. V. Wadekar, S. Puttaswamy, K, H. Cheng, S. C. Hsieh, H. Y. J. Wang, K. K. Kuo, Y. Sun and L. W. Tu, “Fast detection of tumor marker CA 19-9 using AlGaN/GaN high electron mobility transistors,” Sensors and Actuators B, 2018, 267, 191-197.
[109] N. F. Chiu, C. C. Chen, C. D. Yang, Y. S. Kao and W. R. Wu, “Enhanced Plasmonic Biosensors of Hybrid Gold Nanoparticle-Graphene Oxide-Based Label-Free Immunoassay,” Nanoscale Research Letters, 2018,13,152.
[110] F. Salehnia, F. Faridbod, A. S. Dezfuli, M. R. Ganjali and P. Norouzi, “Cerium(III) Ion Sensing Based on Graphene Quantum Dots Fluorescent Turn-Off,” Journal of Fluorescence, 2017, 27, 331-338.
[111] S. Link and M. A. El-Sayed, “Size and Temperature Dependence of the Plasmon Absorption of Colloidal Gold Nanoparticles,” J. Phys. Chem. B, 1999, 103, 4212-4217.
[112] Y. C. Chuang, W. T. Huang, P. H. Chiang, M. C. Tang and C. S. Lin, “Aqueous zymography screening of matrix metalloproteinase activity and inhibition based on colorimetric gold nanoparticles,” Biosensors and Bioelectronics, 2012, 32, 24-31.
[113] Y. J. Ma, L. Jiang, Y. J. Mei, R. B. Song, D. B. Tian and H. Huang, “Colorimetric sensing strategy for mercury(II) and melamine utilizing cysteamine-modified gold nanoparticles,” Analyst, 2013, 138, 5338-5343.
[114] J. Y. Kang, Y. J. Zhang, X. Li, L. J. Miao and A. G. Wu, “A Rapid Colorimetric Sensor of Clenbuterol Based on Cysteamine-Modified Gold Nanoparticles,” ACS Appl. Mater. Interfaces, 2016, 8, 1-5.
[115] S. L. Ting, S. J. Ee, A. Ananthanarayanan, K. C. Leong and P. Chen, “Graphene quantum dots functionalized gold nanoparticles for sensitive electrochemical detection of heavy metal ions,” Electrochimica Acta, 2015, 172, 7-11.
[116] J. Chen, A. Than, N. Lia, A. Ananthanarayanan, X. T. Zheng, F. Xic, J. Liu, J. Tian and P. Chen, “Sweet graphene quantum dots for imaging carbohydrate receptors in live cells,” FlatChem, 2017, 5, 25-32.
[117] Y. Y. Liu and D. Y. Kim, “Ultraviolet and blue emitting graphene quantum dots synthesized from carbon nano-onions and their comparison for metal ion sensing,” Chem. Commun., 2015, 51, 4176-4179.
[118] S. L. Ting, S. J. Ee, A. Ananthanarayanan, K. C. Leong and P. Chen, “Graphene quantum dots functionalized gold nanoparticles for sensitive electrochemical detection of heavy metal ions,” Electrochimica Acta, 2015, 172, 7-11.
[119] Y. Q. Feng, J. P. Zhao, X. B. Yan, F. L. Tang and Q. J. Xue, “Enhancement in the fluorescence of graphene quantum dots by hydrazine hydrate reduction,” Carbon, 2014, 66, 334-339.
[120] M. A Dkhil, A. A Bauomy, M. SM. Diab, S. Al-Quraishy, “Antioxidant and hepatoprotective role of gold nanoparticles against murine hepatic schistosomiasis,” Int J Nanomedicine., 2015, 10, 7467-7475.