簡易檢索 / 詳目顯示

研究生: 林彩渝
Lin, Tsai-Yu
論文名稱: 利用臨場紅外光譜研究二氧化鈦材料與硫化銦材料在光催化二氧化碳還原中所扮演之角色
In situ FTIR Spectroscopy Studies of the Role of TiO2-Based and In2S3-Based Materials in the Photocatalytic CO2 Reduction
指導教授: 陳貴賢
Chen, Kuei-Hsien
林麗瓊
Chen, Li-Chyong
吳恆良
Wu, Heng-Liang
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 97
中文關鍵詞: 光催化臨場紅外光譜二氧化鈦硫化銦
英文關鍵詞: photocatalysis, in-situ FTIR, TiO2, In2S3
DOI URL: http://doi.org/10.6345/NTNU201900944
論文種類: 學術論文
相關次數: 點閱:224下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 光催化還原是現今熱門研究的主題。為了解決光觸媒材料現今困於低效率以及低選擇性。因此需要對光觸媒材料以及二氧化碳還原有更進一步的認識。本論文利用臨場紅外光技術研究二氧化碳還原反應在光觸媒材料表面的行為。在光觸媒材料裡面,二氧化鈦材料已經被廣泛研究,本論文針對Pure-TiO2、H-Ni-TiO2以及SCN-H-Ni-TiO2 三種二氧化鈦基材料進行探討尤其是表面處理。除了二氧化鈦材料本論文選用ZnS、In2S3以及ZnS/In2S3 混和物進行探討尤其是異質介面。
    此研究發現在二氧化鈦基材料裡面SCN-H-Ni-TiO2表現出了與兩個二氧化鈦材料對於二氧化碳及水有更多的吸附量。而在ZnS/In2S3 (2:1)材料可以觀察到In2S3是主導二氧化碳吸附的分子,同時在ZnS/In2S3 (2:1)有比另外兩者有更多的吸附。在光催化二氧化碳還原過程中,二氧化鈦材料以及硫化銦材料裡面都可以觀察到COOH*的生成,這表示兩者有同樣的中間產物。
    二氧化碳以及水是光催化二氧化碳還原過程中必備的兩個反應分子。為了更進一步探討二氧化碳以及水在光觸媒材料表面的作用,本論文設計了順序實驗去進行探討。二氧化鈦材料以及硫化銦基材料依先二氧化碳再水的順序以及先水再二氧化碳的順序利用臨場紅外光譜以及氣相層析光譜分析。在氣相層析光譜結果是先二氧化碳再水的效率會比先水再二氧化碳的效率還要好。結合紅外光譜的數據,本論文針對順序實驗提出了兩種不同的表面機制行為。第一個是先通二氧化碳再通水,此實驗會讓二氧化碳直接先吸附在活性位形成CO2-,這是有利於二氧化碳還原反應的發生;第二個是先通水再通二氧化碳,此實驗會讓水先吸附在活性位,造成大量水分解的發生,不利於二氧化碳還原的進行。總結,水及CO2- 在二氧化鈦材料以及硫化銦材料上的二氧化碳還原反應是重要的反應物。未來可以在二氧化碳還原中去探討是否可以利用二氧化碳及水的比例去抑制水分解的行為進行更進一步的研究。

    Photocatalytic CO2 reduction is one of the most popular subjects of recent research. However, the photocatalyst is still showing low efficiency and low selectivity. In order to solve this problem, further understanding of photocatalyst materials and carbon dioxide reduction is important. In this thesis, the in-situ FTIR studies the behavior of carbon dioxide reduction reaction on the surface of photocatalyst materials. In the photocatalyst material, titanium dioxide has been widely studied because of their unique physicochemical properties. The adsorption behavior of CO2 and H2O of three kinds of TiO2-based materials including Pure-TiO2, H-Ni-TiO2 and SCN-H-Ni-TiO2 were studied. In addition to TiO2-based materials, the role of sulfide-based materials such as ZnS and In2S3 and their hybrid in photocatalytic CO2 reduction was examined.
    The adsorption behavior of CO2 and water H2O vapor before photocatalytic CO2 reaction was investigated by in-situ FTIR. In the TiO2-based materials, SCN-H-Ni-TiO2 shows more adsorption of carbon dioxide and water than the other TiO2-based materials. In sulfide-based materials, In2S3 dominates the adsorption behavior of carbon dioxide species. The hybrid materials such as ZnS/In2S3 show when used alone more adsorption of carbon dioxide and water than the ZnS and In2S3 samples.
    In this thesis, CO2 reduction on the samples were investigated by GC and FTIR. In FTIR, the formation of COOH* can be observed in both TiO2-based materials and the In2S3-based materials.
    Carbon dioxide and water are two essential molecules in photocatalytic CO2 reduction. In order to study the role of CO2 and H2O on the photocatalyst surface including TiO2-based materials and In2S3-based materials, in-situ FTIR and GC measurement were performed under CO2 and H2O in sequence and H2O and CO2 in sequence. In GC results, introducing CO2 and H2O in sequence showed better performance than H2O and CO2 in sequence. Combined FTIR results, this thesis proposes two different surface mechanism behaviors for sequence experiment. In CO2 and H2O in sequence experiment, the CO2 will directly adsorb to the active site to form CO2-, which is beneficial to the CO2 reduction. In H2O and CO2 in sequence experiment, water will occupy active site, causing the water splitting, which adversely affects CO2 reduction. In summary, H2O and CO2- are important reactants for CO2 reduction on TiO2-based materials and In2S3-based materials. This work provides the insights of controlling the amount of CO2/H2O to control water splitting process on the surface during photocatalysts CO2 reduction, which can be further studied in the future.

    致謝 I 中文摘要 II Abstract IV 目錄 VI 表目錄 VIII 圖目錄 IX 第一章 緒論 1 1-1 前言 1 第二章 文獻回顧 3 2-1 光觸媒原理 3 2-2 二氧化碳還原技術發展 7 2-2 黑色二氧化鈦 Black-TiO2 13 2-3 SCN修飾在摻鎳黑色二氧化鈦 15 2-4 硫化銦材料(In2S3) 17 2-5 紅外臨場分析技術(In-situ techniques) 18 第三章 藥品及實驗儀器與方法 25 3-1 藥品、氣體及儀器 25 3-2 實驗架設及樣品準備 26 3-3 臨場紅外光譜實驗流程 27 3-4氣相層析儀實驗流程 30 3-5 儀器原理 31 第四章 臨場紅外光譜在二氧化鈦基材料(TiO2-based materials)的研究 35 4-1二氧化碳與二氧化碳加水在二氧化鈦材料的吸附 35 4-2光催化還原在二氧化鈦材料的吸附 43 4-3光催化在二氧化碳及水先後順序下的表面吸附行為探討 51 第五章 臨場紅外光譜在硫化銦材料(sulfide-based materials)的研究 75 5-2光催化還原在硫化銦材料的吸附 82 5-3光催化在二氧化碳及水先後順序下的表面吸附行為探討 87 第六章 結論 91 參考資料 93

    1. Zhang Yi, G.; Pagani, M.; Liu, Z.; Bohaty Steven, M.; DeConto, R., A 40-million-year history of atmospheric CO2. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 2013, 371 (2001), 20130096.
    2. Kudo, A., Photocatalyst Materials for Water Splitting. Catalysis Surveys from Asia 2003, 7 (1), 31-38.
    3. Fujishima, A.; Honda, K., Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature 1972, 238 (5358), 37-38.
    4. Whipple, D. T.; Kenis, P. J. A., Prospects of CO2 Utilization via Direct Heterogeneous Electrochemical Reduction. The Journal of Physical Chemistry Letters 2010, 1 (24), 3451-3458.
    5. Hod, I.; Sampson, M. D.; Deria, P.; Kubiak, C. P.; Farha, O. K.; Hupp, J. T., Fe-Porphyrin-Based Metal–Organic Framework Films as High-Surface Concentration, Heterogeneous Catalysts for Electrochemical Reduction of CO2. ACS Catalysis 2015, 5 (11), 6302-6309.
    6. Yu, J.; Low, J.; Xiao, W.; Zhou, P.; Jaroniec, M., Enhanced Photocatalytic CO2-Reduction Activity of Anatase TiO2 by Coexposed {001} and {101} Facets. Journal of the American Chemical Society 2014, 136 (25), 8839-8842.
    7. Habisreutinger, S. N.; Schmidt-Mende, L.; Stolarczyk, J. K., Photocatalytic Reduction of CO2 on TiO2 and Other Semiconductors. Angewandte Chemie International Edition 2013, 52 (29), 7372-7408.
    8. Kumar, A.; Ergas, S.; Yuan, X.; Sahu, A.; Zhang, Q.; Dewulf, J.; Malcata, F. X.; van Langenhove, H., Enhanced CO2 fixation and biofuel production via microalgae: recent developments and future directions. Trends in Biotechnology 2010, 28 (7), 371-380.
    9. Ho, S.-H.; Chen, C.-Y.; Lee, D.-J.; Chang, J.-S., Perspectives on microalgal CO2-emission mitigation systems — A review. Biotechnology Advances 2011, 29 (2), 189-198.
    10. Chueh, W. C.; Haile, S. M., Ceria as a Thermochemical Reaction Medium for Selectively Generating Syngas or Methane from H2O and CO2. ChemSusChem 2009, 2 (8), 735-739.
    11. Bushuyev, O. S.; De Luna, P.; Dinh, C. T.; Tao, L.; Saur, G.; van de Lagemaat, J.; Kelley, S. O.; Sargent, E. H., What Should We Make with CO2 and How Can We Make It? Joule 2018, 2 (5), 825-832.
    12. Hong, J.; Zhang, W.; Ren, J.; Xu, R., Photocatalytic reduction of CO2: a brief review on product analysis and systematic methods. Analytical Methods 2013, 5 (5), 1086-1097.
    13. Halmann, M., Photoelectrochemical reduction of aqueous carbon dioxide on p-type gallium phosphide in liquid junction solar cells. Nature 1978, 275 (5676), 115-116.
    14. Inoue, T.; Fujishima, A.; Konishi, S.; Honda, K., Photoelectrocatalytic reduction of carbon dioxide in aqueous suspensions of semiconductor powders. Nature 1979, 277 (5698), 637-638.
    15. Mao, J.; Li, K.; Peng, T., Recent advances in the photocatalytic CO2 reduction over semiconductors. Catalysis Science & Technology 2013, 3 (10), 2481-2498.
    16. Kočí, K.; Obalová, L.; Matějová, L.; Plachá, D.; Lacný, Z.; Jirkovský, J.; Šolcová, O., Effect of TiO2 particle size on the photocatalytic reduction of CO2. Applied Catalysis B: Environmental 2009, 89 (3), 494-502.
    17. Goren, Z.; Willner, I.; Nelson, A. J.; Frank, A. J., Selective photoreduction of carbon dioxide/bicarbonate to formate by aqueous suspensions and colloids of palladium-titania. The Journal of Physical Chemistry 1990, 94 (9), 3784-3790.
    18. Cheng, H.; Huang, B.; Liu, Y.; Wang, Z.; Qin, X.; Zhang, X.; Dai, Y., An anion exchange approach to Bi2WO6 hollow microspheres with efficient visible light photocatalytic reduction of CO2 to methanol. Chemical Communications 2012, 48 (78), 9729-9731.
    19. Woolerton, T. W.; Sheard, S.; Pierce, E.; Ragsdale, S. W.; Armstrong, F. A., CO2 photoreduction at enzyme-modified metal oxide nanoparticles. Energy & Environmental Science 2011, 4 (7), 2393-2399.
    20. Chen, Y.; Li, C. W.; Kanan, M. W., Aqueous CO2 Reduction at Very Low Overpotential on Oxide-Derived Au Nanoparticles. Journal of the American Chemical Society 2012, 134 (49), 19969-19972.
    21. Tan, L.-L.; Ong, W.-J.; Chai, S.-P.; Mohamed, A. R., Photocatalytic reduction of CO2 with H2O over graphene oxide-supported oxygen-rich TiO2 hybrid photocatalyst under visible light irradiation: Process and kinetic studies. Chemical Engineering Journal 2017, 308, 248-255.
    22. Wang, W.-N.; An, W.-J.; Ramalingam, B.; Mukherjee, S.; Niedzwiedzki, D. M.; Gangopadhyay, S.; Biswas, P., Size and Structure Matter: Enhanced CO2 Photoreduction Efficiency by Size-Resolved Ultrafine Pt Nanoparticles on TiO2 Single Crystals. Journal of the American Chemical Society 2012, 134 (27), 11276-11281.
    23. Hou, W.; Hung, W. H.; Pavaskar, P.; Goeppert, A.; Aykol, M.; Cronin, S. B., Photocatalytic Conversion of CO2 to Hydrocarbon Fuels via Plasmon-Enhanced Absorption and Metallic Interband Transitions. ACS Catalysis 2011, 1 (8), 929-936.
    24. Shown, I.; Samireddi, S.; Chang, Y.-C.; Putikam, R.; Chang, P.-H.; Sabbah, A.; Fu, F.-Y.; Chen, W.-F.; Wu, C.-I.; Yu, T.-Y.; Chung, P.-W.; Lin, M. C.; Chen, L.-C.; Chen, K.-H., Carbon-doped SnS2 nanostructure as a high-efficiency solar fuel catalyst under visible light. Nature Communications 2018, 9 (1), 169.
    25. Hsu, H.-C.; Shown, I.; Wei, H.-Y.; Chang, Y.-C.; Du, H.-Y.; Lin, Y.-G.; Tseng, C.-A.; Wang, C.-H.; Chen, L.-C.; Lin, Y.-C.; Chen, K.-H., Graphene oxide as a promising photocatalyst for CO2 to methanol conversion. Nanoscale 2013, 5 (1), 262-268.
    26. He, Z. Q.; Wang, D.; Fang, H. Y.; Chen, J. M.; Song, S., Highly efficient and stable Ag/AgIO3 particles for photocatalytic reduction of CO2 under visible light. Nanoscale 2014, 6 (18), 10540-10544.
    27. Regonini, D.; Bowen, C. R.; Jaroenworaluck, A.; Stevens, R., A review of growth mechanism, structure and crystallinity of anodized TiO2 nanotubes. Materials Science and Engineering: R: Reports 2013, 74 (12), 377-406.
    28. Chen, X.; Liu, L.; Yu, P. Y.; Mao, S. S., Increasing Solar Absorption for Photocatalysis with Black Hydrogenated Titanium Dioxide Nanocrystals. Science 2011, 331 (6018), 746.
    29. Chen, C.; Lei, X. F.; Xue, M. Z., A simple method to synthesise Ag-doped TiO2 photocatalysts with different Ag0:Ag2O atomic ratios for enhancing visible-light photocatalytic activity. 2017; Vol. 41, p 475-483.
    30. Li, N.; Liu, M.; Yang, B.; Shu, W.; Shen, Q.; Liu, M.; Zhou, J., Enhanced Photocatalytic Performance toward CO2 Hydrogenation over Nanosized TiO2-Loaded Pd under UV Irradiation. The Journal of Physical Chemistry C 2017, 121 (5), 2923-2932.
    31. Yu, H.; Irie, H.; Shimodaira, Y.; Hosogi, Y.; Kuroda, Y.; Miyauchi, M.; Hashimoto, K., An Efficient Visible-Light-Sensitive Fe(III)-Grafted TiO2 Photocatalyst. The Journal of Physical Chemistry C 2010, 114 (39), 16481-16487.
    32. Humayun, M.; Qu, Y.; Raziq, F.; Yan, R.; Li, Z.; Zhang, X.; Jing, L., Exceptional Visible-Light Activities of TiO2-Coupled N-Doped Porous Perovskite LaFeO3 for 2,4-Dichlorophenol Decomposition and CO2 Conversion. Environmental Science & Technology 2016, 50 (24), 13600-13610.
    33. Ola, O.; Mercedes Maroto-Valer, M., Role of catalyst carriers in CO2 photoreduction over nanocrystalline nickel loaded TiO2-based photocatalysts. Journal of Catalysis 2014, 309, 300-308.
    34. Billo, T.; Fu, F.-Y.; Raghunath, P.; Shown, I.; Chen, W.-F.; Lien, H.-T.; Shen, T.-H.; Lee, J.-F.; Chan, T.-S.; Huang, K.-Y.; Wu, C.-I.; Lin, M. C.; Hwang, J.-S.; Lee, C.-H.; Chen, L.-C.; Chen, K.-H., Ni-Nanocluster Modified Black TiO2 with Dual Active Sites for Selective Photocatalytic CO2 Reduction. Small 2018, 14 (2), 1702928.
    35. Fu, F.-Y.; Shown, I.; Li, C.-S.; Raghunath, P.; Lin, T.-Y.; Billo, T.; Wu, H.-L.; Wu, C.-I.; Chung, P.-W.; Lin, M.-C.; Chen, L.-C.; Chen, K.-H., KSCN-induced Interfacial Dipole in Black TiO2 for Enhanced Photocatalytic CO2 Reduction. ACS Applied Materials & Interfaces 2019.
    36. Gao, C.; Li, J.; Shan, Z.; Huang, F.; Shen, H., Preparation and visible-light photocatalytic activity of In2S3/TiO2 composite. Materials Chemistry and Physics 2010, 122 (1), 183-187.
    37. Liu, L.; Gao, F.; Zhao, H.; Li, Y., Tailoring Cu valence and oxygen vacancy in Cu/TiO2 catalysts for enhanced CO2 photoreduction efficiency. Applied Catalysis B: Environmental 2013, 134-135, 349-358.
    38. Zeng, Z.-C.; Hu, S.; Huang, S.-C.; Zhang, Y.-J.; Zhao, W.-X.; Li, J.-F.; Jiang, C.; Ren, B., Novel Electrochemical Raman Spectroscopy Enabled by Water Immersion Objective. Analytical Chemistry 2016, 88 (19), 9381-9385.
    39. Zhou, G.; Liu, H.; Cui, K.; Jia, A.; Hu, G.; Jiao, Z.; Liu, Y.; Zhang, X., Role of surface Ni and Ce species of Ni/CeO2 catalyst in CO2 methanation. Applied Surface Science 2016, 383, 248-252.
    40. Handoko, A. D.; Wei, F.; Jenndy; Yeo, B. S.; Seh, Z. W., Understanding heterogeneous electrocatalytic carbon dioxide reduction through operando techniques. Nature Catalysis 2018, 1 (12), 922-934.
    41. Brantley, N. H.; Kazarian, S. G.; Eckert, C. A., In situ FTIR measurement of carbon dioxide sorption into poly(ethylene terephthalate) at elevated pressures. Journal of Applied Polymer Science 2000, 77 (4), 764-775.
    42. Yang, C.-C.; Yu, Y.-H.; van der Linden, B.; Wu, J. C. S.; Mul, G., Artificial Photosynthesis over Crystalline TiO2-Based Catalysts: Fact or Fiction? Journal of the American Chemical Society 2010, 132 (24), 8398-8406.
    43. Jiao, X.; Li, X.; Jin, X.; Sun, Y.; Xu, J.; Liang, L.; Ju, H.; Zhu, J.; Pan, Y.; Yan, W.; Lin, Y.; Xie, Y., Partially Oxidized SnS2 Atomic Layers Achieving Efficient Visible-Light-Driven CO2 Reduction. Journal of the American Chemical Society 2017, 139 (49), 18044-18051.
    44. Wu, J.; Li, X.; Shi, W.; Ling, P.; Sun, Y.; Jiao, X.; Gao, S.; Liang, L.; Xu, J.; Yan, W.; Wang, C.; Xie, Y., Efficient Visible-Light-Driven CO2 Reduction Mediated by Defect-Engineered BiOBr Atomic Layers. Angewandte Chemie International Edition 2018, 57 (28), 8719-8723.
    45. Grabow, L. C.; Mavrikakis, M., Mechanism of Methanol Synthesis on Cu through CO2 and CO Hydrogenation. ACS Catalysis 2011, 1 (4), 365-384.
    46. Li, X.; Liang, L.; Sun, Y.; Xu, J.; Jiao, X.; Xu, X.; Ju, H.; Pan, Y.; Zhu, J.; Xie, Y., Ultrathin Conductor Enabling Efficient IR Light CO2 Reduction. Journal of the American Chemical Society 2019, 141 (1), 423-430.
    47. He, H.; Zapol, P.; Curtiss, L. A., A Theoretical Study of CO2 Anions on Anatase (101) Surface. The Journal of Physical Chemistry C 2010, 114 (49), 21474-21481.
    48. Liao, L. F.; Lien, C. F.; Shieh, D. L.; Chen, M. T.; Lin, J. L., FTIR Study of Adsorption and Photoassisted Oxygen Isotopic Exchange of Carbon Monoxide, Carbon Dioxide, Carbonate, and Formate on TiO2. The Journal of Physical Chemistry B 2002, 106 (43), 11240-11245.
    49. Belhadj, H.; Hakki, A.; Robertson, P. K. J.; Bahnemann, D. W., In situ ATR-FTIR study of H2O and D2O adsorption on TiO2 under UV irradiation. Physical Chemistry Chemical Physics 2015, 17 (35), 22940-22946.

    無法下載圖示 本全文未授權公開
    QR CODE