簡易檢索 / 詳目顯示

研究生: 林彥亨
Yen-Heng Lin
論文名稱: 改良式64 × 64絕緣層上矽晶陣列式波導光柵之研究
Study of 64 × 64 Improved Arrayed Waveguide Grating Based on SOI
指導教授: 曹士林
Tsao, Shyh-Lin
學位類別: 碩士
Master
系所名稱: 光電工程研究所
Graduate Institute of Electro-Optical Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 英文
論文頁數: 118
中文關鍵詞: 陣列式波導光柵絕緣層上矽晶漸寬式波導電光調變器分波多工積體光學
英文關鍵詞: AWG, SOI, Tapered Waveguide, electro-optic switches, WDM, Integrated optics
論文種類: 學術論文
相關次數: 點閱:625下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究在於設計改良一個光纖通訊被動元件中的陣列式波導光柵分波多工器,並且完成一個規格64 × 64通道、50 GHz的陣列式波導光柵分波多工器。在陣列式波導光柵,我們利用陣列波導間之固定光程差產生空間及波長之分波效應,並分析其陣列波導在自由傳佈區接面之波導間距對系統插入損失及串音之影響,並分析漸變式波導在輸入及輸出埠與自由傳佈區接面對系統之影響。
在64 × 64陣列式波導光柵分波多工器應用方面,我們著重提出一種光波長選擇的設計,藉由結合陣列式波導光柵及電光調變器所組成之光波長選擇調變器。藉以控制電光調變器達到篩選波長的機制,藉此從波導中取出特定信號,以達到可控制特定波長信號的路由路徑。此光波長選擇調變器可應用於全光高密度分波多工的傳輸網路系統中,可達到波長選擇的目的。

The passive device of arrayed waveguide grating (AWG) are the most potential and developmental devices in wavelength division multiplexing (WDM). This thesis focus on improved designing AWG in optical fiber communication and building a design of 64 × 64 channels, 50GHz AWG which have good performance based on silicon-on-insulator (SOI) wafer. In AWG, we use the technique of the constant path length difference at adjacent waveguide of waveguide array to realize the spatial and spectrum division, and discuss the waveguide separation influence at the junction of free propagation region and arrayed waveguide. We also concern the insertion loss and crosstalk affected by applying tapered waveguide at the interface between the input/output waveguide and free propagation region.
In the application of 64 × 64 AWG device, we focus on the new optical wavelength selector. The optical wavelength selective switch which combines AWG structure and electro-optic switches structure. We demonstrate that some particular channel can be selected independently by controlling the corresponding electro-optical switches. Such a device can be applied into reconfigurable WDM systems in the future.

Chinese Abstract…………………………………………………………i English Abstract……………………………………………………ii Acknowledgment………………………………………………………iii Contents ………………………………………………………………iv List of Figures ……………………………………………………vii List of Tables ………………………………………………………xiii Chapter 1 Introduction………………………………………1 1-1 Arrayed Waveguide Gratings………………………………………1 1-2 Forms of Photonic Network……………………………………4 1-3 Frame of the Thesis…………………………………………………5 Chapter 2 Design and Analysis of 64 × 64 Silicon-on-Insulator Arrayed Waveguide Grating Planner Optical Waveguide Device………………………………10 2-1 Introduction of the basics of Arrayed Waveguide Grating…………12 2-2 64×64 Arrayed Waveguide Grating Principles…………………14 2-2-1 Single Mode Rib Waveguide……………14 2-2-2 Theoretical Model of an Arrayed Waveguide Grating………15 2-2-3 Operation of the 64×64 Arrayed Waveguide Grating…………21 2-3 Design Methods of 64×64 Arrayed Waveguide Grating……………23 2-3-1 Introduction……………………………………………………23 2-3-2 Definition of the High-Level Parameters of Arrayed Waveguide Gratings…………………………………………………23 2-3-3 Design of 64-Channel Arrayed Waveguide Grating………27 2-4 Simulation Results and Analysis of 64×64 Channel Arrayed Waveguide Grating………………………………………………………………29 2-4-1 Beam Propagation Method Principles………………………29 2-4-2 Typical Arrayed Waveguide Grating…………………………….32 2-4-3 Study and Analysis the Waveguide Separation of Phased Array Waveguides…………………………………………………33 2-4-4 Design and Analysis of Tapered Waveguide at the Junction of Input/Output Port and Free Propagation Region…36 2-5 Summary……………………………………………………………38 Chapter 3 Fabrication and Experimental Results of Integrated Optical 64 × 64 Silicon-on-Insulator Arrayed Waveguide Grating............................60 3-1 Introduction of UNIBOND Silicon-on- Insulator Wafer with “Smart-Cut Process”……………………………………………………………61 3-2 Flowchart of Device Fabrication, and Introduction of Basic Semiconductor Process…………………………………………65 3-3 Experiment Process and Results of Integrated Optical 64 × 64 Arrayed Waveguide Grating Based on UNIBOND SOI Wafer………………71 3-4 Discussion and Conclusions………………………………………75 Chapter 4 Design and Application of Incorporating 64 × 64 Arrayed Waveguide Grating and Electro-Optical Switches………………………………………87 4-1 Introduction of The Technique of Electro-Optical Switch……………88 4-1-1 Free Carrier Dispersion Effect………………………………90 4-2 Introduction of Electro-Optical Switch to Waveguide Array at Arrayed Waveguide Grating………………………………………………94 4-3 Basic Principle of Incorporating Arrayed Waveguide Grating and Electro-Optical Switches…………………………………………96 4-4 Design and Simulation……………………………………………99 4-5 Summary……………………………………………………………104 Chapter 5 Conclusions………………………………………116 References………………………………………………119 Publication Lists…………………………………………xiv

[1]J.K. Kim, Y.C. Chung, “Simple optical add-drop multiplexer using 2 × N arrayed-waveguide grating”, Optical Fiber Communication Conference and Exhibit, 2002. OFC 2002, p.p. 737 - 738, 17-22 March 2002.
[2]M. Maier, M. Reisslein, “AWG-based metro WDM networking,” IEEE Communications Magazine, vol. 42, no. 11, pp. S19-S26, Nov. 2004.
[3]A. Kaneko, “Recent Progress on Arrayed-Waveguide Gratings for WDM Applications,” Nanostructures and Quantum Dots/WDM Components/VCSELs and Microcavaties/RF Photonics for CATV and HFC Systems, 1999 Digest of the LEOS Summer Topical Meetings, p.p. II29 - II30, 26-30 July 1999.
[4]C. G. M. Vreeburg, C. G. P. Herben, X. J. M. Leijtens, M. K. Smit, F. H. Groen, J. J. G. M. van der Tol, and P. Demeester, “A Low-Loss 16-Channel Polarization Dispersion-Compensated PHASAR Demultiplexer,” IEEE Photon. Technol. Lett., vol. 10, no. 3, pp. 382-384, March 1998.
[5]M. Okawa, K. Maru, K. Ohira, S. Takasugi, H. Nounen, H. Uetsuka, “Development of 128-channel 100GHz Arrayed Waveguide Grating with Pitch Conversion Waveguide,” Electron. Lett., vol. 27, pp. 1663-1665, 1991.
[6]S. Kamei, M. Ishii, T. Kitagawa, M. Itoh, and Y. Hibino, “64-channel very low crosstalk arrayed-waveguide grating multi/demultiplexer module using a cascade connection technique,” J. Lightwave Technol., vol. 22, Issue: 5, pp.1242 - 1262, May 2004.
[7]H. Ishii, M. Kohtoku, and Y. Yoshikuni, “Semiconductor Arrayed-Waveguide-Grating (AWG) and its Applications,” J. Lightwave Technol., vol. 12, no. 8, pp. 1394–1400, 1994.
[8]Senichi Suzuki, “Arrayed-Waveguide Gratings for Dense-WDM Systems,” J. Lightwave Technol., vol. 15, no. 3, pp. 505–518, 1997.
[9]Y. Tachikawa, Y. Inoue, M. Ishii, and T. Nozawa, “Arrayed-Waveguide Grating Multiplexer with Loop-Back Optical Paths and Its Applications,” J. Lightwave Technol., vol. 14, no. 6, pp. 977-980, June 1996
[10]S. Kamei, M. Ishii, T. Kitagawa, M. Itoh and Y. Hibino, “64-channel ultra-low crosstalk arrayed-waveguide grating multi/demultiplexer module using cascade connection technique,” IEEE Electron. Lett., vol. 39, no. 1, pp.81-82, January 2003.
[11]B. Schauwecker, G. Przyrembel, B. Kuhlow, and C. Radehaus, “Small-Size Silicon-Oxynitride AWG Demultiplexer Operating Around 725nm,” IEEE Photon. Technol. Lett., vol. 12, no. 12, pp. 1645-1646, December 2000.
[12]Y. H. Min, M. H. Lee, J. J. Ju, S. K. Park, and J. Y. Do, ”Polymeric 16×16 Arrayed-Waveguide Grating Router Using Fluorinated Polyethers Operating Around 1550nm,” IEEE J. Selected. Quantum Electron., vol. 7 no. 5, Sep. 2001.
[13]A. Shami, X. Bai, C.M. Assi, N. Ghani, “Jitter Performance in Ethernet Passive Optical Networks,” J. Lightwave Technol., vol. 23, no. 4, p.p. 1745 – 1753, April 2005.
[14]K. Hong, J.-S. Baik, C.-H. Lee, “A Method of Lifeline Communication in WDM Passive Optical Networks,” IEEE Photon. Technol. Lett., vol. 17, no. 5, p.p. 1124 – 1126, May 2005.
[15]S.L. Woodward, G.E. Bodeep, T.E. Darcie, G. Huang, Z. Wang, J.J. Werner, “A passive-optical network employing upconverted 16-CAP signals,” IEEE Photon. Technol. Lett., vol. 8, no. 9, p.p. 1249 – 1251, Sept. 1996
[16]N. Ghani, A. Shami,; C. Assi, M.Y.A. Raja, “Intra-ONU bandwidth scheduling in Ethernet passive optical networks,” IEEE Communications Letters, vol. 8, no. 11, p.p. 683 – 685, Nov. 2004.
[17]S.U. Khan, “Passive optical network layout in Manhattan,” IEEE Photon. Technol. Lett., vol. 15, no. 10, p.p. 1488 – 1490, Oct. 2003.
[18]E.S. Son, K.H. Han, J.K. Kim, Y.C. Chung, “Bidirectional WDM passive optical network for simultaneous transmission of data and digital broadcast video service,” J. Lightwave Technol., vol. 21, no. 8, p.p. 1723 – 1727, Aug. 2003.
[19]G. Kramer, G. Pesavento, “Ethernet passive optical network (EPON): building a next-generation optical access network,” IEEE Communications Magazine, vol. 40, no. 2, p.p. 66 – 73, Feb. 2002.
[20]F.J. Effenberger, H. Ichibangase, H. Yamashita, “Advances in broadband passive optical networking technologies,” IEEE Communications Magazine, vol. 39, no. 12, p.p. 118 – 124, Dec. 2001.
[21]D.S. Greywall, P.A. Busch, F. Pardo, D.W. Carr, G. Bogart, H.T. Soh, “Crystalline silicon tilting mirrors for optical cross-connect switches,” Journal of Microelectromechanical Systems, vol. 12, no. 5, p.p. 708 – 712, Oct. 2003.
[22]Xiaojun Cao, V. Anand,; Yizhi Xiong, Chunming Qiao, “A study of waveband switching with multilayer multigranular optical cross-connects,” IEEE Journal on Selected Areas in Communications, vol. 21, no. 7, p.p. 1081 – 1095, Sept. 2003.
[23]Nam Su Moon, K. Kikuchi, “N × N multiwavelength optical cross-connect based on tunable fiber Bragg gratings,” J. Lightwave Technol., vol. 21, no. 3, p.p. 703 – 718, March 2003.
[24]S. Pau, M. De Angelis, B. Holland, “Time-multiplexed signals and parallel signal analysis/switch optimization for MEMS-based optical cross-connect,” J. Lightwave Technol., vol. 21, no. 3, p.p. 609 – 613, March 2003.
[25]R.R.A. Syms, “Scaling laws for MEMS mirror-rotation optical cross connect switches,” J. Lightwave Technol., vol. 20, no. 7, p.p. 1084 – 1094, July 2002.
[26]Fenghai Liu, Xueyan Zheng, R.J.S. Pedersen, P. Jeppesen, “New types of 2×2 wavelength-switching blocks for optical cross-connects,” IEEE Photon. Technol. Lett., vol. 13, no. 5, p.p. 493 – 495, May 2001.
[27]Shan Zhong, Wei Chen, Xiao-Hui Yang, Yung-Jui Chen, “Transparent optical path and crosstalk monitoring scheme for arrayed waveguide grating-based optical cross connect,” IEEE Photon. Technol. Lett., vol. 12, no. 9, p.p. 1249 – 1251, Sept. 2000.
[28]E. Modiano, “Traffic grooming in WDM networks,” IEEE Communications Magazine, vol. 39, pp. 124-129, July 1991.
[29]M. Zirngibl, C. Dragone, and C. H. Joyner, “Demonstration of a 15x15 arrayed waveguide multiplexer on InP,” IEEE Photon. Technol. Lett., vol. 4, pp. 1250-1253, Nov. 1992.
[30]Y. Hida, T. Inoue, and S. Imamura, “Polymeric arrayed-waveguide grating multiplexer operating around 1.3mm,” Electron. Lett., vol. 30, pp. 959-960, 1994.
[31]P.D. Trink et.al, “Silicon-on-insulator (SOI) phased-arrayed wavelength multi-demultiplexer with extremely low-polarization sensitivity,” IEEE Photonics Technology Letters, vol. 9, pp. 940-942, 1997.
[32]K. Takada, M. Abe, Y. Hida, T. Shibata, M. Ishii, A. Himeno, K. Okamoto, “Fabrication of 2 GHz-spaced 16-channel arrayed-waveguide grating demultiplexer for optical frequency monitoring applications”, Electroni. Lett., vol.36, pp. 1643 - 1644, Sept. 2000
[33]H. Toda, T. Yamashita, T. Kuri, K. Kitayama, “Demultiplexing using an arrayed-waveguide grating for frequency-interleaved DWDM millimeter-wave radio-on-fiber systems”, Lightwave Technol., vol. 21, pp. 1735 - 1741, Aug. 2003.
[34]S. Mysore, R. Villa, G. Beveridge, “Performance of broadband DWDM networks”, Electronic-Enhanced Optics, Optical Sensing in Semiconductor Manufacturing, Electro-Optics in Space, Broadband Optical Networks, 2000. Digest of the LEOS Summer Topical Meetings , pp. IV23 - IV24, July 2000.
[35]A. Kaneko, “Recent progress on arrayed-waveguide gratings for WDM applications”, Nanostructures and Quantum Dots/WDM Components/VCSELs and Microcavaties/RF Photonics for CATV and HFC Systems, 1999 Digest of the LEOS Summer Topical Meetings, pp. II29 - II30, July 1999.
[36]M. Kohtoku, H. Sanjoh, S. Oku, Y. Kadota, Y. Yoshikuni and Y. Shibata “InP-based 64-channel arrayed waveguide grating with 50 GHz channel spacing and up to –20dB crosstalk,” Electron. Lett., vol. 33, pp. 1786-1787, 1997.
[37]B. Buchold and E. voges, “ Polarization insensitive arrayed-waveguide grating multiplexers with ion-exchanged waveguides in glass,” IEEE J. Select. Topics Quantum Electron, vol. 7, pp. 806-811, 2001.
[38]H. Takenouchi, H. Tsuda, and T. Kurokawa, “Analysis of optical-signal processing using an arrayed-waveguide grating,” Opt. Express, vol. 6, pp. 124, Mar. 2000.
[39]M. Smit, ”New focusing and dispersive planar component based on an optical phased array,” Electron. Lett., vol. 24, pp. 385-386, Mar. 1988.
[40]S. Toyoda, A. Kaneko, N. Ooba, H. Yamada, T. Kurihara, K. Okamoto, S. Imamura, “Polarization-independent low-crosstalk polymeric AWG-based tunable filter operating around 1.55 μm,” IEEE Photon. Technol. Lett., vol. 11, no. 9, p.p. 1141–1143, Sept. 1999.
[41]OptiWave BPM_CAD, Waveguide Optics Modelling Software System – OptiWave Corporation.
[42]M.G. Thompson, D. Brady, S.W. Roberts, “Chromatic dispersion and bandshape improvement of SOI flatband AWG multi/demultiplexers by phase-error correction”, IEEE Photon. Technol. Lett., vol. 15, pp. 924 – 926, July 2003.
[43]A. Sakai, G. Hara, T. Baba, “Large effective index and low bend loss in SOI optical waveguides”, The 4th Pacific Rim Conference on Lasers and Electro-Optics, 2001. CLEO/Pacific Rim 2001, vol. 1, pp. I-4 - I-5, July 2001.
[44]U. Fischer, T. Zinke, J.-R. Kropp, F. Arndt, and K. Petermann, “0.1 dB/cm waveguide losses in singlemode SOI rib waveguides,” Phot. Techn. Lett., vol. 8, 647, 1996.
[45]K. Petermann, “Properties off optical rib-guides with large cross-section,” Archiv fur Elektronik und Uberetragungstechnik, vol. 30, pp. 139-140, 1976.
[46]M. K. Smit and Cor van Dam, “PHASAR-Based WDM-Devices: Principles, Design and Applications,” IEEE J. of Selected Topics in Quantum Electronics, vol. 2, no. 2, pp. 236-250, 1996.
[47]A. Kaneko, T. Goh, H. Yamada, T. Tanaka and I. Ogawa, “Design and applications of silica-based planar ligntwave circuits,” IEEE J. Selected Topics in Quantum Electron., vol. 5, no. 5, pp. 1227-1235, 1999.
[48]P. M. Pelosi, P. Vandenbulcke, C. D. W. Wilkinsion and R. M. De la Rue, “Propagation characteristics of trapezoidal cross-section ridge optical waveguides: An experimental and theoretical investigation.” Appl. Opt., vol. 17, pp. 1187-1193, 1978.
[49]Research by Nippon Telegraph and Telephone Corporation, “400-channel arrayed waveguide grating with 25GHz spacing”, 2002.
[50]Hiroaki Yamada, Kazumasa Takada and Seiko Mitachi, “Crosstalk Reduction in a 10 GHz Spacing Arrayed-Waveguide Grating by Phase-Error Compensation”, J. Lightwave Technol., vol. 16, no. 3, March 1998
[51]P.D. Trinh, S. Yegnanarayanan, F. Coppinger, B. Jalali, “Silicon-on-insulator phased-array waveguide grating WDM filter,” Conference on Optical Fiber Communication. OFC 97., p.p. 301 – 302, 16-21 Feb. 1997.
[52]A Klekamp and R Munzer, “Imaging Errors in Arrayed Waveguide Gratings”, IEEE Optical and Quantum Electron., vol. 35, 2003, pp. 333-345
[53]K. A. McGreer, “Arrayed Waveguide Gratings for Wavelength Routing”, University of Manitoba and TRLabs, IEEE commications Magazine, December 1998.
[54]D. Fonseca, R. Lus and A. Cartaxo, “Design and performance of AWG multiplexer / demultiplexer in WDM systems”, 3Conferncia Nacional de Telecomunicaes, Figueira da Foz, Portugal, pp. 164-168, 2001.
[55]P Munoz, D Pator, and J Capmany “Modelling and Design of Arrayed Waveguide Gratings”, J. Lightwave Technol., vol. 20, no. 4, April 2002
[56]D. Trouchet, A. Beguin, H. Boek, C. Prel, C. Lerminiaux, R.O. Maschmeyer, “Passband flattening of PHASAR WDM using input and output star couplers designed with two focal points,” Conference on Optical Fiber Communication. OFC 97., p.p. 302 – 303, 16-21 Feb. 1997.
[57]Y. Rui, Y. Jianyi and W. Minghua, “Analysis of rib waveguides with trapezoidal cross section,” Guangxue Xeubao (Acta Optica Sinica), vol. 20, pp. 1494-1498, 2000.
[58]C. Dragone, ”An N×N optical multiplexer using a planar arrangement of two star couplers,” IEEE Photon. Technol. Lett., vol. 3, pp. 896-899, 1991.
[59]R. Adar, C. H. Henry, C. Dragone, R. C. Kistler and M. A. Milbrodt, “Broad-band array multiplexers made with silica waveguides on silicon,” J. Lightwave Technology, vol. 11, pp. 212-218, 1993.
[60]M. K. Smit, “New focusing and dispersive planar component based on an optical phased array,” Electron. Lett., vol. 24, pp. 385-386, 1988.
[61]P. Danielsen, “ Two-dimensional propagating beam analysis of an electrooptic waveguide modulator,” IEEE J. Quantum Electron., vol. 20, pp. 1093-1097, 1984.
[62]A. Neyer, W. Mevenkamp, L. Thylen and B. Lagerstrom, “A beam propagation method analysis of active and passive waveguide crossings,” J. Lightwave Technol., vol. 3, pp. 635-642, 1985.
[63]Katsunari Okamoto, Fundamentals of Optical Waveguides, Academic Press, 2000.
[64]D. Yevick and B. Hermansson, “New formulations of the matrix beam propagation method: Application of rib waveguides,” IEEE J. Quantum Electron., vol. 25, pp.221-229, 1989.
[65]D. Yevick and B. Hermansson, “Efficient beam propagation method techigques,” IEEE Quantum Electron., vol. 26, pp.109-112, 1990.
[66]B. Hermanssoon, D. Uevick, W. Bardyszewski, and M. Glasner, “The unitary of split-operator finite difference and finite-element methods: Applications to longitudinally varying semiconductor rib waveguide,” J. Lightwave Technol., vol. 8, pp. 1866-1973, 1990.
[67]Y. Chung and N. Dagli, “Explicit finite difference beam propagation: Application to semiconductor rib waveguide Y-junction analysis,” Electron. Lett., vol. 26, pp. 711-713, 1990.
[68]W. P. Huang and C. L. Xu, “Simulation of three-dimensional optical waveguides by a full-vector beam propagation method,” J. Quantum Electron., vol. 29, pp. 26-39, 1993.
[69]D. Yevick and M. Glasner, “Analysis of forward wide-angle light propagation in semiconductor rib waveguides and integrated-optic structures,” Electron. Lett., vol. 25, pp. 1611-1613, 1989.
[70]OptiWave WDM_Phasar, Version: 2.0, Waveguide Optics Modelling Software System – OptiWave Corporation.
[71]M. C. Parker, A. Yiptong, R. J. Mears, “A novel active holographic arrayed-waveguide grating for WDM subsystems”, Optical Fiber Communication Conference, vol. 2, pp.77-79, 2000.
[72]Y. Hibino, “An array of photonic filtering advantages: arrayed -waveguide-grating multi/demulti -plexers for photonic networks”, IEEE Circuits and Devices Magazine, vol. 16, pp.21-27, Nov. 2000.
[73]Noguchi, K. Koike, Y. Tanobe, H. Harada, K. Matsuoka, M., “Field trial of full-mesh WDM network (AWG-STAR) in metropolitan/local area,” J. Lightwave Tech., Vol. 22, pp.329 – 336, Feb. 2004
[74]Kawai T. Obara H., “Crosstalk reduction in N×N WDM multi/demultiplexers by cascading small arrayed waveguide gratings (AWG's),” J. Lightwave Technol., vol. 15, pp. 1929 – 1937, Oct. 1997
[75]S. Y. Kim, S. H Han, J. S. Lee, “WDM channel wavelength monitoring by periodically modulating the AWG temperature,” Optical Fiber Communication Conference and Exhibit, 2002. OFC 2002 , pp.748 – 749, 17-22 March 2002
[76]C. Fan, M. Maier, M. Reisslein, “The AWG/spl par/PSC network:a performance-enhanced single-hop WDM network with heterogeneous protection,” J. Lightwave Technol., vol. 22, Issue: 5, pp.1242 - 1262, May 2004
[77]M. Maier, M. Scheutzow, M. Reisslein, “The arrayed-waveguide grating-based single-hop WDM network: an architecture for efficient multicasting”, Journal on Selected Areas in Communication, vol. 21 , Issue: 9 , pp. 1414 – 1432, Nov. 2003
[78]C. Themistos, M. Rajarajan, B.M.A. Rahman, K.T.V. Grattan, ” Characterization of MMI- and AWG-based N×N devices for WDM applications”, Electrotechnical Conference, 2000. MELECON 2000. 10th Mediterranean, pp. 27 - 30 vol.1, May 2000
[79]S.M. Gemelos, D. Wonglumsom, L.G. Kazovsky, “Impact of crosstalk in an arrayed-waveguide router on an optical add-drop multiplexer,” IEEE Photon. Technol. Lett., vol. 11, pp. 349–351, 1999.
[80]J.K. Kim, Y.C. Chung, “Simple optical add-drop multiplexer using 2/spl times/N arrayed-waveguide grating,” Optical Fiber Communication Conference and Exhibit, 2002. OFC 2002, pp. 737–738, 2002.
[81]J.J.O. Pires, N. Parnis, E. Jones, M. O'Mahony, “Crosstalk implications in full-mesh WDM ring networks using arrayed-waveguide grating OADMS,” 24th European Conference on Optical Communication, vol. 1 , pp. 541–542, 1998.
[82]M.C. Parker, F. Farjady, S.D. Walker, “Optimised wavelength-set multi-stage broadband access network employing arrayed-waveguide grating routers,” IEE Colloquium on Multiwavelength Optical Networks: Devices, Systems and Network Implementations (Ref. No. 1998/257), pp. 4/1–4/4 17, June 1998.
[83]K. Okamoto, A. Kaneko, M. Itou, “Array waveguide grating routers for 50 GHz applications,” Optical Fiber Communication Conference, 1999, and the International Conference on Integrated Optics and Optical Fiber Communication. OFC/IOOC '99. Technical Digest, vol. 1, pp. 190 – 192, 21–26 Feb. 1999.
[84]Chung Char-Dir, “Coherent and differentially coherent detections of orthogonally multiplexed orthogonal phase-modulated signals,” IEEE Transactions on Communications, vol. 51, no. 3, pp. 428–440, March 2003.
[85]G. A. Vawter, V. M. Hietala, S. H. Kravitz, “Digital optical phase control in ridge-waveguide phase modulators,” IEEE Photon. Technol. Lett., vol. 5 , no. 3, pp. 313–315, March 1993.
[86]R. A. H. Lewis, R. A. Perrott, “Multiple beam stripline network for phased array applications,” IEE Colloquium on Multiple Beam Antennas and Beamformers, pp. 4/1–4/5, Nov. 1989.
[87]P. Akkaraekthalin, C. Sawangnate, V. Vivek, “Conductor-backed coplanar waveguide directional coupler and its use for a varactor-tuned 90° phase shifter,” The 2000 IEEE Asia-Pacific Conference on Circuits and Systems, 2000. IEEE APCCAS 2000, pp. 525–528, 4-6 Dec. 2000
[88]A. J. Weierholt, S. Neegard, “Theory of directional couplers including transition region phase shifts,” IEEE J. Quantum Electron., vol. 26, no. 7, pp. 1227 – 1233, July 1990.
[89]S. H. Li, C. M. Liaw, “Development of three-phase switch-mode rectifier using single-phase modules,” IEEE Transactions on Aerospace and Electronic Systems, vol. 40, no. 1, pp. 70–79, Jan. 2004.
[90]K. Takayama, K. Habara, H. Miyazawa, A. Himeno, “High-frequency operation of a phase-locked loop-type clock regenerator using a 1×2 optical switch as a phase comparator,” IEEE Photon. Technol. Lett., vol. 4, no. 1 , pp. 99–101, Jan. 1992.
[91]Cho Won-Sun, Lim Youn-Sub, Choi Young-Wan, “Novel structures of traveling-wave MQW electro-absorption modulators for 1.55 μm operation,” The Pacific Rim Conference on Lasers and Electro-Optics, 1999. CLEO/Pacific Rim '99., vol. 2 , pp. 527–528, 1999.
[92]S. Shimotsu, S. Oikawa, T. Saitou, N. Mitsugi, K. Kubodera, T. Kawanishi, M. Izutsu, “Single side-band modulation performance of a LiNbO3 integrated modulator consisting of four-phase modulator waveguides,” IEEE Photon. Technol. Lett., vol. 13 , no. 4 , pp. 364–366, April 2001.
[93]C. H. Shin, M. Ohtsu, “Homodyne optical phase locking of resonant cavity coupled semiconductor lasers,” IEEE J. Quantum Electron., vol. 29, no. 2 , pp. 374–385, Feb. 1993.
[94]K. Ishida, H. Nakamura, H. Matsunura, T. Kadoi, and H. Inoue, “InGaAsP/InP optical switches using carrier induced refractive index change,” Appl. Phys. Lett., vol. 50, no. 1, pp. 141–142, 1987.
[95]F. Ito, M. Matsuura, and T. Tanifuji, “A carrier injection type optical switch in GaAs using free carrier plasma dispersion with wavelength range from 1.06 to 1.55 μm,” IEEE J. Quantum Electron., vol. 25, pp. 1677–1681, Aug. 1989.
[96]J. P. Lorenzo and R. A. Soref, “1.3 μm electro-optic silicon switch,” Appl. Phys. Lett., vol. 51, no. 1, pp. 6–8, 1987.
[97]G. V. Treyz, P. G. May, and G.-M. Halbout, “Silicon Mach–Zehnder waveguide interferometers based on the plasma dispersion effect,” Appl. Phys. Lett., vol. 59, no. 5, pp. 771–773, 1991.
[98]R. A. Soref, J. Schmidtchen, and K. Peyermann, “Large singlemode rib waveguide in GeSi–Si and Si-on-SiO2,” IEEE J. Quantum Electron., vol. 27, pp. 1971–1974, Aug. 1991.
[99]J. Schmidtchen, A. Splett, B. Schupper, K. Petermann, and G. Burbach, “Low-loss singlemode optical waveguides with large cross-section in silicon-on-insulator,” Electron. Lett., vol. 27, no. 11, pp. 1486–1488, 1991.
[100]C. K. Tang and G. T. Reed, “Highly efficient optical phase modulator in SOI waveguides,” Electron. Lett., vol. 31, no. 6, pp. 451–452, 1995.
[101]C. Z. Zhao, G. Z. Li, E. K. Liu, Y. Gao, and X. D. Liu, “Silicon on insulator Mach–Zehnder waveguide interferometers operating at 1.3 μm,” Appl. Phys. Lett., vol. 67, no. 17, pp. 2448–2449, 1995.
[102]Y. L. Liu, E. K. Liu, S. L. Zhang, G. Z. Li, and J. S. Luo, “Silicon 1 × 2 digital optical switch using plasma dispersion,” Electron. Lett., vol. 30, no. 1, pp. 130–131, 1995.
[103]C. Z. Zhao, E. K. Liu, G. Z. Li, Y. Gao, and C. S. Guo, “Zero-gap directional coupler switch integrated into a silicon-on-insulator for 1.3 μm operation,” Opt. Lett., vol. 21, no. 20, pp. 1664–1666, 1996.
[104]S. B. Alexander, R. S. Bondurant, D. Byrner, V. W. S. Chan, S. G. Finn, R. Gallager, B. S. Glance, H. A. Haus, P. Hublet, R. Jain, I. P. Kaminow, M. Karol, R. S. Kennedy, A. Kirby, H. Q. Le, A. A. M. Saleh, B. A. Schofield, J. H. Shapiro, N. K. Shankaranarayanan, R. E. Thomas, R. C. Williamson, and R. W. Wilson, “A precompetitive consortium on wide-band all optical network,” J. Lightwave Technol., vol. 11, pp. 714–735, May/June 1993.
[105]M. Koga, Y. Hamazumi, A. Watanabe, S. Okamoto, H. Obara, K. Sato, M. Okuno, and S. Suzuki, “Design and performance of an optical path cross-connect system based on wavelength path connect,” J. Lightwave Technol., vol. 14, pp. 1106–1119, June 1996.
[106]Y. Yano, T. Ono, K. Fukuchi, T. Ito, H. Yamazaki, M. Yamaguchi, and K. Emura, “2.6 Terabit/s WDM transmission experiment using optical duobinary coding,” in Proc. ECOC’96, ThB.31, 1996.
[107]C. A. Brackett, A. S. Acampora, J. Sweitzer, G. Tangonan, M. T. Smith, W. Lennon, K. Wang, and R. H. Hobbs, “A scalable multiwavelength multihop optical network: A proposal for research on all-optical networks,” J. Lightwave Technol., vol. 11, pp. 736–735, May/June 1993.
[108]K. Sasayama, K. Habara, and T. Kominato: “Photonic FDM highway switch using PLC ring resonators,” in Proc. ECOC’96, vol. 2, WeP10.2, 1993.
[109]H. Takahashi, S. Suzuki, and I. Nishi, “Wavelength multiplexer based on SiO2-Ta2O5 arrayed-waveguide grating,” IEEE J. Lightwave Technol., vol. 12, no. 6, pp. 989–995, 1994.
[110]K. Okamoto, K. Moriwaki, and S. Suzuki, “Fabrication of 64 × 64 arrayed-waveguide grating multiplexer on silicon,” Electron. Lett., vol. 31, no. 3, pp. 184–185, 1995.
[111]K. Okamoto, K. Takiguchi, and Y. Ohmori, “16ch optical add/drop multiplexer using silica-based arrayed-waveguide gratings,” in Proc. OFC’95, PD10-1, 1995.
[112]M. Kawachi, “Silica waveguides on silicon and their application to integrated-optic components,” Opt. Quantum Electron., vol. 22, pp. 391–416, 1990.
[113]S. Suzuki, A. Himeno, Y. Tachikawa, and Y. Yamada, “Multichannel optical wavelength selective switch with arrayed-waveguide grating multiplexer,” Electron. Lett., vol. 30, no. 13, pp. 1091–1092, 1994.
[114]O. Ishida, H. Takahashi, S. Suzuki, and Y. Inoue, “Multichannel frequency-selective switch employing an arrayed-waveguide grating multiplexer with fold-back optical paths,” IEEE Photon. Technol. Lett., vol. 6, pp. 1219–1221, Oct. 1994.
[115]C. G. M. Vreeburg, T. Uitterdijk, Y. S. Oei, M. K. Smit, F. H. Groen, J. J. G. M. van der Tol, P. Demeester, and H. J. Frankena, “Compact integrated InP-based add-drop multiplexer,” in Proc. ECOC’96, ThD.3.4, 1996.
[116]Y. Tachikawa, Y. Inoue, M. Kawachi, H. Takahashi, and K. Inoue, “Arrayed-waveguide grating add-drop multiplexer with loop-back optical paths,” Electron. Lett., vol. 29, no. 24, pp. 2133–2134, 1993.
[117]Y. Tachikawa, Y. Inoue, M. Ishii, and T. Nozawa, “Arrayed-waveguide grating multiplexer with loop-back optical paths and its applications,” J. Lightwave Technol., vol. 14, pp. 977–984, June 1996.
[118]A. Vonsovice and A. Koster, “Numerical simulation of a silicon-on-insulator waveguide structure for phase modulation at 1.3m,” J. Lightwave Technol., vol. 17, no. 1, pp. 129–135, 1999.
[119]M. Bruel, “Silicon on insulator material technology,” IEE Electron. Lett., vol. 31, pp. 1201–1202, 1995.
[120]M. Abe, T. Kitagawa, K. Hattori, A. Himeno, Y. Ohmori, “Electro-optic switch constructed with a poled silica-based waveguide on a Si substrate,” Electron. Lett., vol. 32, no. 10, pp. 893–894, 9 May 1996.
[121]R. A. Soref, and B. R. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron., vol. QE-23, no. 1, pp. 123–129, 1987.

QR CODE