研究生: |
高嘉良 Chia-Liang Kao |
---|---|
論文名稱: |
移動機器人之階層模糊邏輯控制 Hierarchical Fuzzy Logic Control of Mobile Robots |
指導教授: |
呂藝光
Leu, Yih-Guang |
學位類別: |
碩士 Master |
系所名稱: |
科技應用與人力資源發展學系 Department of Technology Application and Human Resource Development |
論文出版年: | 2006 |
畢業學年度: | 100 |
語文別: | 中文 |
論文頁數: | 101 |
中文關鍵詞: | 移動機器人 、雷射測距儀 、階層模糊邏輯 |
英文關鍵詞: | Mobile robots, laser sensor, hierarchical fuzzy logic controller |
論文種類: | 學術論文 |
相關次數: | 點閱:127 下載:8 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
ㄧ般而言機器人在未知的環境中移動,通常需要使用大量感測器來感測周遭環境變化,以達成自主導航和完成工作任務之目的。若使用模糊邏輯系統來設計控制器,由於大量感測器訊號當作輸入,導致模糊規則數會變得非常龐大。因此,本論文使用階層模糊邏輯控制(Hierarchical Fuzzy Logic Controllers,HFLC)方法設計一移動機器人控制器,完成移動機器人在未知環境中可以自主移動且夾取目標物,階層模糊邏輯控制器將行為分成六種子動作行為模式以便減少模糊規則數。本論文之機器人之硬體架構包括:全方向輪控制、DC馬達控制、雷射測距儀量測、紅外線距離感測器、視覺系統、RF通訊模組與五軸機器手臂之控制。最後,本文透過沿牆面自動導航、抓取目標物、靜態避障、動態避障等實驗來驗證機器人執行各種動作行為和測試移動機器人整體的效能。
For automatically navigating in an uncertain environment, a mobile robot generally requires the huge number of sensors. When the fuzzy logic system is used to design the control of the mobile robot system, the design of the fuzzy rules becomes very complicated because of the large number of sensors. Therefore, this thesis uses a method of Hierarchical Fuzzy Logic Controllers (HFLC) for the mobile robot so that the design of the fuzzy rules becomes simple. To achieve auto navigation and mission, the method divides the behavior of the mobile robot into six mode of the behavior.
To verify the effectiveness and applicability of the proposed method, we design and implement a mobile robot, and the main structure of the mobile robot includes the DC motor control of three omni-directional wheels, laser sensor, radio transceiver module, distance measuring sensor, a vision system and the control of two five-axis robotic arms. Also, we perform some experiments, including auto navigation, target object searching, static obstacle avoidance, dynamic obstacle avoidance and so forth.
[1] A.Bonarini, “Anytime learning and adaptation of hierarchical fuzzy logic behaviors,” Adapt. Behavior J., vol. 5, no. 3–4, pp. 281–315, 1997
[2] T. Fukuda and N. Kubota, “An intelligent robotic system based on a fuzzy approach,” Proceedings of the IEEE, vol. 87, pp. 1448–1470, Aug. 1999.
[3] H. Hagras, V. Callaghan, and M. Colley, “Prototyping design and learning in outdoor mobile robots operating in unstructured outdoor environments,”
IEEE Robot. Automat. Mag., vol. 8, no. 3, pp. 53–69, September 2001.
[4] H. Hagras, M. Colley, and V. Callaghan, “Learning and adaptation of an intelligent mobile robot navigator operating in unstructured environments
based on a novel online fuzzy-genetic system,” J. Fuzzy Sets Syst., vol. 141, no. 1, pp. 107–160, January 2004.
[5] F. Hoffmann and G. Pfister, “Evolutionary design of a fuzzy knowledge base for a mobile robot,” Int. J. Approx. Reason., vol. 17, no. 4, pp. 447–
469, 1997.
[6] V. Matellan, C. Fernandez, and J. Molina, “Genetic learning for fuzzy reactive controllers,” J. Robot. Auton. Syst., vol. 25, pp. 33–41, 1998.
[7] H. Kawata, W. Santosh, T. Mori, A. Ohya and S. Yuta, "Development of ultra-small lightweight optical range sensor system", IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS2005), pp.3277-3282 , August 2005.
[8] A. Safiotti, “Fuzzy logic in autonomous robotics: Behavior coordination,” Fuzzy Systems, Proceedings of the Sixth IEEE International Conference,
vol. 1, no. 1, pp.573–578, 1997.
[9] E. Tunstel, T. Lippincott, and M. Jamshidi, “Behavior hierarchy for autonomous mobile robots: Fuzzy behavior modulation and evolution,”
Intl. J. Intelligent Automat. Soft Computing, vol. 3, no. 1, pp. 37–49, 1997.
[10] H. Hagras, V. Callaghan, and M. Colley “Outdoor mobile robot learning and adaptation,” IEEE Robotics & Automation Magazine, vol. 8, no. 1 , pp. 53–
69, no. 3, September 2001.
[11] H. Hagras “A Hierarchical Type-2 Fuzzy Logic Control Architecture for Autonomous Mobile Robots,” IEEE transactions on fuzzy systems, vol. 12, no. 4,
August 2004
[12] L. X. Wang, “Universal approximation by hierarchical fuzzy systems,” Fuzzy Sets and Systems, vol. 93, no. 2, pp. 223-230, 1998.
[13] M. L. Lee, H. Y. Chung and F. M. Yu, “Modeling of hierarchical fuzzy systems,” Fuzzy Sets and Systems, vol. 138, no. 2, pp. 343-361, 2003.
[14] H. Hagras, “Type-2 FLCs: A new Generation of Fuzzy Controllers”, IEEE Computational Intelligence Magazine, vol. 2, no. 1, pp. 30-43, February 2007.
[15] Q. Liang and J. M. Mendel, “Interval type-2 fuzzy logic systems: Theory and design, ”IEEE Trans. Fuzzy Syst., vol. 8, no. 5, pp. 535–550, Oct. 2000.
[16] R. Bellman, Adaptive Control Processes, Princeton University Press Princeton, 1966.
[17] L. A. Zadeh, “Fuzzy Sets,” Information and Control, vol. 8, pp. 338-353, June 1965.
[18] L. Wang, “Analysis and design of hierarchical fuzzy systems,” Fuzzy Systems, IEEE Transactions , vol. 7, pp. 617–624, Oct. 1999.
[19] G. V. S. Raju, J. Zhou, and R. A. Kisner, “Hierarchical fuzzy control,”Int. J. Contr., vol. 54, no. 5, pp. 1201–1216, 1991
[20] H. Ying and G. Chen, “Necessary conditions for some typical fuzzy systems as universal approximators,” Automatica, vol. 33, no. 7, pp.1333–1338,
1997.
[21] X. J. Zeng and M. G. Singh, “Approximation theory of fuzzy systems—MIMO case,” Fuzzy Systems, IEEE Transactions, vol. 3, pp. 219–235, November 1995.
[22] J. Aranda, A. Grau, and J. Climent, “Control Architecture for a Three-wheeled Roller Robot,” AMC’98-Coimbra. 5th International Workshop on Advanced
Motion Control, pp. 518-523, July 1998.
[23] L. R. Williams,“Dynamic Model With Slip for Wheeled Omnidirectional Robots,” IEEE Transactions on Robotics and Automation, pp. 285-293, June 2002.
[24] K. S. Byun, S. J. Kim, and J. B. Song, “Design of a four omnidirectional mobile robot with variable wheel arrangement mechanism,” Proc. of IEEE Int.
Conf. on Robotics and Automation, pp. 720-725, May 2002.
[25] K. S. Byun and J. B. Song, “CVT Control of an Omnidirectional Mobile Robot with Steerable Omnidirectional Wheels for Energy Efficient Drive,” Proc.
of IEEE Int. Conf. on Robotics and Automation, pp. 503-508, September 2003.
[26] M. J. Jung, H. S. Kim, S. Kim, and J. H. Kim, “Omnidirectional Mobile Base OK-II,” Proc. IEEE Int. Conf. Robotics and Automation, pp. 3449-3454,
vol. 4, 2000.
[27] K. L. Moore, M. Davidson, V. Bahl, S. Rich, and S. Jirgal, “Modeling and control of a six-wheeled autonomous robot,” Proc. American Control Conf.,
vol. 3, pp. 1483-1490, 2000.
[28] K. Watanabe, Y. Shiraishi, S. Tzafestas, J. Tang, and T. Fukuda, “Feedback control of an omnidirectional autonomous platform for mobile service
robots,” J. Intell. Robot. Syst., pp. 315-330, vol. 22, 1998.
[29] G. Witus, “Mobility potential of a robotic 6-wheeled omnidirectional drive vehicle (ODV) with Z-axis and tire inflation control,” Proc. SPIE, pp.
106-114, vol. 4024, 2000.
[30] S. Ziaie-Rad, F. Janabi-Sharifi, M.M. Danesh-Panah, A. Abdollahi, H. Ostadi and H. Samani., “A Practical Approach to Control and Self-Localization
of Persia Omni-Directional Mobile Robot,” in Proceedings of 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems, Edmonton,
Canada, pp. 3473-3479 , 2005.
[31] H.R. Moballegh, P. Amini, Y. Pakzad, M. Hashemi and M. Narmiani, “An Improvement of Self-localization for Omni-directional Mobile Robots Using a New
Odometry Sensor and Omni-directional Vision,” in Proceedings of Canadian Conference on Electrical and Computer Engineering, Niagara Falls, pp. 2337-
2340, 2004.
[32] Y. Liu, R.L. Williams and J.J. Zhu, “Integrated Control and Navigation for Omni-directional Mobile Robot Based on Trajectory,” in Proceedings of
American Control Conference, New York City, USA, pp. 2153-2158, 2007.
[33] K. Watanabe, “Control of an Omni-directional Mobile Robot,” in Proceedings of Second International Conference on Knowledge-Based Intelligent
Electronic Systems, Adelaide, Australia, pp. 51-60, 1998.
[34] R. A. Brooks. "A robust layered control system for a mobile robot". IEEE Journal of Robotics and Automation, pp.14-23, 1986.
[35] D. W. Payton."An architecture for reflexive autonomous vehicle control". In Procs. of the IEEE Int.Conf. on Robotics and Automatzon, pp.1838-1845,
San Francisco, CA, 1986.
[36] R. C. Arkin. "Motor schema based navigation for a mobile robot". In Procs of the IEEE Int. Conf. on Robotics and Automation, pp. 264-271, 1987.
[37] L. Wang, "Analysis and Design of Hierarchical Fuzzy Systems", Fuzzy Systems, IEEE Transactions , vol. 7, no. 5, October 1999
[38] 王文俊,“認識 Fuzzy-第二版“,全華科技圖書出版社,October 1997。
[39] 汪惠健,“模糊理論與應用“,台灣培生教育出版股份有限公司,November 2006。
[40] 張得隆;洪兆慶,“Fuzzy 產品基礎與實例“全華科技圖書股份有限公司,June1995
[41] 林信成;彭啟峰,“Oh! Fuzzy 模糊理論分析“第三波文化事業股份有限公司,August 1994。
[42] 鄭永順(2005):輪型行動機器人之自動航行與路徑規劃,國立中央 大學電機工程學系碩士論文
[43] 鐘宏見(2007):DNA 演化模糊系統應用於移動機器人控制,國立台灣師範大學應用電子科技所碩士論文。
[44] 謝伯楷(2008):居家型移動機器人之軟硬體設計與控制,國立台灣師範大學應用電子科技所碩士論文
[45] http://www.ai.mit.edu/projects/humanoid-robotics-group/kismet/kismet.html
[46] http://www.mhi.co.jp/products/detail/wakamaru.html
[47] http://www.irobot.com/gi/ground/SUGV/
[48] http://yschen.ee.yzu.edu.tw/Courses/Micro8051Ex/981/MPC82G516_ICE_TOOL_UserManual_V10.pdf
[49] http://www.playrobot.com/motro_driver/files/IG-52GM.pdf
[50] http://www.parallax.com/Portals/0/Downloads/docs/prod/motors/HB-25MotorController-V1.2.pdf
[51] http://www.active-robots.com/products/radio-solutions/radioboard-details.shtml
[52] http://www.hokuyo-aut.jp/02sensor/07scanner/download/data/URG-04LX_spec.pdf
[53] http://www.hokuyo-aut.jp/02sensor/07scanner/download/data/URG_SCIP20.pdf
[54] http://www.drrobot.com/products/item_downloads/DUR5200_1.pdf
[55] http://fab.cba.mit.edu/classes/MIT/863.04/people/arikan/sharpGP2Y0A.pdf
[56] http://www.drrobot.com/products/item_downloads/WFS802g_1.pdf
[57] http://www.klb.com.tw/chinese/main.htm
[58] http://www.mrbattery.com.tw/
[59] http://www.hdgroup.com.tw/wp/