簡易檢索 / 詳目顯示

研究生: 李家榮
Chia-Jung Lee
論文名稱: 三五族半導體發光二極體接面溫度之數值模型與特性探討
Determination of Junction Temperature in III-V Compound Semiconductor Light-Emitting Diodes
指導教授: 李亞儒
Lee, Ya-Ju
學位類別: 碩士
Master
系所名稱: 光電工程研究所
Graduate Institute of Electro-Optical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 54
中文關鍵詞: 發光二極體接面溫度
英文關鍵詞: LED, Junction temperature
論文種類: 學術論文
相關次數: 點閱:272下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 發光二極體(Light-emitting diode, LED)的接面溫度(Junction temperature, TJ)直接且深遠地影響其輸出特性與元件壽命,因此,準確的量測及評估發光二極體之接面溫度是必須且非常重要的。本論文提出一個準確計算氮化銦鎵(InGaN)與磷化鋁鎵銦(AlGaInP) LEDs接面溫度的物理模型,並探討各個相關物理參數,對發光二極體接面溫度的影響。我們發現,發光二極體其順向電壓(Vf)對電流(I)的偏微分,∂Vf /∂I,及對溫度(T)的偏微分,∂Vf /∂T,相互獨立且不相依;因此,我們可將Vf表示為一個接面溫度與注入電流的線性函數。再由穩態下能量守恆,得出光輸出與熱消耗功率之間的平衡關係。最終,我們推導得出發光二極體其注入電流對接面溫度之物理關係式。依據此關係式,本論文進而討論影響LED接面溫度的一些重要物理參數—包含LED之轉換效率(η)、串聯電阻(Rs)以及熱阻(Rth)對接面溫度的影響。
    我們發現轉換效率(η)的變化,對於發光二極體的接面溫度只有些微的影響。因此,常見於InGaN LED之效率下降效應(Efficiency-droop effect),對於接面溫度的影響可以被合理的忽略。此外,元件中 與 的大小,為影響LED接面溫度與注入電流間斜率變化的主因;如此,有效控制磊晶品質以降低元件之串聯電阻,或是使用雷射剝離結合基板接合技術來替換導熱係數較高之基板材料,是有效且直接降低LED接面溫度的方式。
    更重要的是,本論文所提出之物理模型,是藉由量測LED的外部特性,即能獲得LED接面溫度與注入電流之關係式。因此,本物理模型,並不侷限於氮化銦鎵與磷化鋁鎵銦化合物半導體,將可廣泛地應用到其他三五族相關半導體元件。

    The junction temperature of a light-emitting diode (LED) directly and greatly affects its performances. Therefore, the reliable measurement and accurate estimation of the junction temperature of an LED is extremely important. This work proposes an approach for directly determining the dependence of junction temperature on injected currents in InGaN and AlGaInP LEDs. The partial derivatives the forward voltage with respect to injected current (∂Vf /∂I) and junction temperature (∂Vf /∂T) are mutually independent, indicating that the forward voltage of the LED is indeed a linear function of injected current and junction temperature. Further separating the light-output power from the generated heat energy yields the physical dependence of junction temperature on injected current. Various important physical parameters include , and that affect the junction temperature of an LED are also considered and compared. Apparently, the and of the LED dominate the increase in junction temperature. In particular, the increase in the junction temperature with is more serious in the InGaN LED than in the AlGaInP LED, revealing that approaches such as wafer bonding and sapphire lift-off, which reduce the of an InGaN LED are an effective in reducing its junction temperature.
    More generally, the derivation of junction temperature herein is fundamentally based on the external properties of an LED, and therefore, can be applied to LEDs formed from other III-V compounds.

    目錄 I 圖目錄 III 表目錄 V 致謝 VI 摘要 VII Abstract IX 第一章 序論 1 1-1 前言 1 1-2 研究動機 2 1-3 文獻回顧 3 第二章 發光二極體簡介及元件特性 6 2-1 發光二極體簡介 6 2-1-1 發光二極體原理及發光機制 6 2-1-2 極化效應 7 2-1-3 Efficiency droop效應 9 2-1-4 電流熱效應 11 2-2 發光二極體之元件特性 13 2-2-1 LED發光光譜 13 2-2-2 LED L-I-V特性 14 2-2-3 Shockley p-n接面擴散理論 14 2-2-4 非理想發光二極體I-V特性及數值模型 18 第三章 發光二極體接面溫度之數值模型探討 22 3-1 接面溫度與電壓關係式 22 3-2 電壓與電流關係式 26 3-3 接面溫度與電流關係式 27 第四章 實驗樣品及架構 29 4-1 實驗樣品 29 4-2 實驗架構 30 第五章 結果分析與討論 32 5-1 注入電流對接面溫度之影響 32 5-1-1 順向電壓法 32 5-1-2 光譜峰值法 36 5-1-3 結果比較 38 5-2 元件特性對接面溫度之影響 39 5-3 元件特性變化率與接面溫度之關係 41 第六章 結論與未來展望 42 6-1 結論 42 6-2 未來展望 43 參考文獻 44 附錄 48

    [1]M. R. Krames, O. B. Shchekin, R. Mueller-Mach, G. O. Mueller, L. Zhou,G. Harbers, and M. G. Craford, “Status and future of high-power light-emitting diodes for solid-state lighting,” IEEE Journal of Display Technology, vol. 3, pp. 160-175, 2007.
    [2]High-Brightness LED Market Review and Forecast 2009, Strategies Unlimited, USA, September, 2009.
    [3]A. Michiue, T. Miyoshi, T. Yanamoto, T. Kozaki, S. Nagahama, Y. Narukawa, M. Sano, T. Yamada, and T. Mukai, “Recent development of nitride LEDs and LDs,” Proc. SPIE, vol. 7216, p.72161Z, 2009.
    [4]參考網站:http://www.cree.com/press/press_detail.asp?i=1265232091259
    [5]W. M. Rohsenow, J. P. Hartnett, and E. N. Ganicang, Handbook of Heat Transfer Fundamentals 2nd ed., McGraw-Hill, New York, 1985, chap. 4, pp. 164.
    [6]L. Kim, G. W. Lee, W. J. Hwang, J. S. Yang, and M. W. Shin, “Thermal analysis and design of GaN-based LEDs for high power applications,” phys. stat. sol. (c), vol. 0, no. 7, pp. 2261-2264, 2003.
    [7]M. Suyama, N. Ogasawara and R. Ito, “Transient Temperature Variation of Injection Lasers,” Jpn. J. Appl. Phys., vol. 20, no. 6, pp. L395-L398, 1981.
    [8]S. Todoroki, M. Sawai, and K. Aiki, “Temperature distribution along the striped active region in high‐power GaAlAs visible lasers,” J. Appl. Phys., vol. 58, no. 3, pp. 1124-1128, 1985.
    [9]P. W. Epperlein, “Reflectance modulation-a novel approach to laser mirror characterization,” Proceedings of 17th International Symposium of Gallium Arsenide and Related Compounds, IOP Conference Series, vol. 112, p. 633, London. 1990.
    [10]H. I. Abdelkader, H. H. Hausien, and J. D. Martin, “Temperature rise and thermal rise-time measurements of a semiconductor laser diode,” Rev. Sci. Instrum., vol. 63, no. 3, pp. 2004-2007, 1992.
    [11]P. W. Epperlein and G. L. Bona, “Influence of the vertical structure on the mirror facet temperatures of visible GalnP quantum well lasers,” Appl. Phys. Lett., vol. 62, no.24, pp. 3074-3076, 1993.
    [12]A. Karim, “Measurement of junction temperature of a semiconductor laser diode,” Proceedings of INMIC, pp.659-662, 2004.
    [13]W. J. Hwang, T. H. Lee, L. Kim, and M. W. Shin, “Determination of junction temperature and thermal resistance in the GaN-based LEDs using direct temperature measurement,” phys. stat. sol. (c), vol. 1, no. 10, pp. 2429-2432, 2004.
    [14]Y. Xi and E. F. Schubert, “Junction–temperature measurement in GaN ultraviolet light-emitting diodes using diode forward voltage method,” Appl. Phys. Lett., vol. 85, no.12, pp. 2163-2165, 2004.
    [15]Y. Xi, J.-Q. Xi, Th. Gessmann, J. M. Shah, J. K. Kim, E. F. Schubert, A. J. Fischer, M. H. Crawford, K. H. A. Bogart, and A. A. Allerman, “Junction and carrier temperature measurements in deep-ultraviolet light-emitting diodes using three different methods,” Appl. Phys. Lett., vol. 86, p. 031907, 2005.
    [16]Yangang Xi, Thomas Gessmann, Jingqun Xi, Jong Kyu Kim, Jay M. Shah, E. Fred Schubert, Arthur J. Fischer, Mary H. Crawford, Katherine H. A. Bogart and Andrew A. Allerman, “Junction Temperature in Ultraviolet Light-Emitting Diodes,” J. J. Appl. Phys., vol. 44, no. 10, pp. 7260–7266, 2005.
    [17]S. Chhajed, Y. Xi, Th. Gessmanna, J.-Q. Xi, J. M. Shah, J. K. Kim, and E. F. Schubert, “Junction temperature in light-emitting diodes assessed by different methods,” Proc. SPIE Int. Soc. Opt. Eng., vol. 5739, pp. 16-24, Mar. 2005.
    [18]J. Cho, C. Sone, Y. Park, and E. Yoon, “Measuring the junction temperature of III-nitride light emitting diodes using electro-luminescence shift,” phys. stat. sol. (a), vol. 202, no. 9, pp. 1869-1873, 2005.
    [19]L. Kim and M. W. Shin, “Thermal Resistance Measurement of LED Package with Multichips,” IEEE transactions on components and packaging technologies, vol. 30, no. 4, pp.632-636, 2007.
    [20]Nie-Chuan Chen, Chih-Min Lin, Yen-Kai Yang, Chi Shen, Tong-Wen Wang, Meng-Chyi Wu, “Measurement of Junction Temperature in a Nitride Light-Emitting Diode,” J. J. Appl. Phys., vol. 47, no. 12, pp. 8779-8782, 2008.
    [21]J. Senawiratne, W. Zhao, T. Detchprohm, A. Chatterjee, Y. Li, M. Zhu, Y. Xia, J. L. Plawsky, and C. Wetzel, “Junction temperature analysis in green light emitting diode dies on sapphire and GaN substrates,” phys. stat. sol. (c), vol. 5, no. 6, pp.2247-2249, 2008.
    [22]Z. Vaitonis, P. Vitta, and A. Žukauskas, “Measurement of the junction temperature in high-power light-emitting diodes from the high-energy wing of the electroluminescence band,” J. Appl. Phys., vol. 103, p.093110, 2008.
    [23]Lian Li, Ping Li, Yumei Wen, Jing Wen, and Yong Zhu, “Temperature dependences of photoluminescence and electroluminescence spectra in light-emitting diodes,” Appl. Phys. Lett., vol. 94, p. 261103, 2009.
    [24]Yaqi Wang, Hui Xu, Siddharth Alur, An-Jen Cheng, Minseo Park, Sharukh Sakhawat, Arindra N. Guha, Okechukwu Akpa, Saritha Akavaram and Kalyankumar Das, “Determination of Junction Temperature of GaN-based Light Emitting Diodes by Electroluminescence and Micro-Raman Spectroscopy,” CS MANTECH Conference, May 18th-21st, 2009.
    [25]A. Thamm, O. Brandt, J. Ringling, A. Trampert, and K. H. Ploog, “Optical properties of heavily doped GaN/(Al,Ga)N multiple quantum wells grown on 6H-SiC(0001) by reactive molecular-beam epitaxy,” Phys. Rev. B, vol. 61, pp. 16025-16028, 2000.
    [26]A. E. Romanov, T. J. Baker, S. Nakamura, and J. S. Speck, “Strain-induced polarization in wurtzite III-nitride semipolar layers,” J. Appl. Phys., vol. 100, p. 023522, 2006.
    [27]F. Bernardini, Nitride Semiconductor Devices: Principles and Simulation, J. Piprek, Editor, Wiley-VCH, Weinheim, Germany, 2007, pp. 4968.
    [28]S. F. Chichibu, A. C. Abare, M. S. Minsky, S. Keller, S. B. Fleischer, J. E. Bowers, E. Hu, U. K. Mishra, L. A. Coldren, S. P. DenBaars, and T. Sota, “Effective band gap inhomogeneity and piezoelectric field in InGaN/GaN multiquantum well structures,” Appl. Phys. Lett., vol. 73, pp. 2006-2008, 1998.
    [29]P. Riblet, H. Hirayama, A. Kinoshita, A. Hirata, T. Sugano, and Y. Aoyagi, “Determination of photoluminescence mechanism in InGaN quantum wells,” Appl. Phys. Lett., vol. 75, pp. 2241-2243, 1999.
    [30]P. Waltereit, O. Brandt, A. Trampert, H. T. Grahn, J. Menniger, M. Ramsteiner, M. Reiche and K. H. Ploog, “Nitride semiconductors free of electrostatic fields for efficient white light-emitting diodes,” Nature, vol. 406, pp. 865-868, 2000.
    [31]Shigefusa F. Chichibu, Akira Uedono, Takeyoshi Onuma, Benjamin A. Haskell, Arpan Chakraborty, Takahiro Koyama, Paul T. Fini, Stacia Keller, Steven P. DenBaars, James S. Speck, et al., “Origin of defect-insensitive emission probability in In-containing (Al,In,Ga)N alloy semiconductors,” Nature Materials, vol. 5, pp. 810-816, 2006.
    [32]Min-Ho Kim, Martin F. Schubert, Qi Dai, Jong Kyu Kim, and E. Fred Schubert, Joachim Piprek, Yongjo Park, “Origin of efficiency droop in GaN-based light-emitting diodes,” Appl. Phys. Lett., vol. 91, p. 183507, 2007.
    [33]Martin F. Schubert, Sameer Chhajed, Jong Kyu Kim, and E. Fred Schubert, Daniel D. Koleske, Mary H. Crawford, Stephen R. Lee, Arthur J. Fischer, Gerald Thaler, and Michael A. Banas, “Effect of dislocation density on efficiency droop in GaInN/GaN light-emitting diodes,” Appl. Phys. Lett., vol. 91, p. 231114, 2007.
    [34]N. F. Gardner, G. O. Müller, Y. C. Shen, G. Chen, S. Watanabe, W. Götz, and M. R. Krames, “Blue-emitting InGaN–GaN double-heterostructure light-emitting diodes reaching maximum quantum efficiency above 200 A/cm2,” Appl. Phys. Lett., vol. 91, pp. 243506, 2007.
    [35]J. Hader, J. V. Moloney, B. Pasenow, S. W. Koch, M. Sabathil, N. Linder, and S. Lutgen, “On the importance of radiative and Auger losses in GaN-based quantum wells,” Appl. Phys. Lett., vol. 92, p. 261103, 2008.
    [36]I. V. Rozhansky and D. A. Zakheim, “Analysis of processes limiting quantum efficiency of AlGaInN LEDs at high pumping,” phys. stat. sol. (a), vol. 204, pp. 227-230, 2007.
    [37]A. Y. Kim, W. Götz, D. A. Steigerwald, J. J. Wierer, N. F. Gardner, J. Sun, S. A. Stockman, P. S. Martin, M. R. Krames, R. S. Kern, and F. M. Steranka, “Performance of High-Power AlInGaN Light Emitting Diodes,” phys. stat. sol. (a), vol. 188, no. 1, pp. 15-21, 2001.
    [38]Y. Yang, X. A. Cao, and C. H. Yan, “Investigation of the nonthermal mechanism of efficiency rolloff in InGaN light-emitting diodes,” IEEE Trans. Electron Devices, vol. 55, pp. 1771-1775, 2008.
    [39]X. A. Cao, Y. Yang, and H. Guo, “On the origin of efficiency roll-off in InGaN-based light-emitting diodes,” J. Appl. Phys., vol. 104, p. 093108, 2008.
    [40]W. Shockley, “The theory of p-n junctions in semiconductors and p-n junction transistors,” Bell System Technical Journal, vol. 28, No. 3, pp. 435-489, 1949.
    [41]W. Shockley, Electrons and Holes in Semiconductors, with Applications to Transistor Electronics., New York: Van Nostrand, 1950.
    [42]Jay M. Shah, Y.-L. Li, Th. Gessmann, and E. F. Schubert, “Experimental analysis and theoretical model for anomalously high ideality factors (n>>2.0) in AlGaN/GaN p-n junction diodes,” J. Appl. Phys., vol. 94, no. 4, pp. 2627-2630, 2003.
    [43]Di Zhu, Jiuru Xu, Ahmed N. Noemaun, Jong Kyu Kim, E. Fred Schubert, Mary H. Crawford, and Daniel D. Koleske, “The origin of the high diode-ideality factors in GaInN/GaN multiple quantum well light-emitting diodes,” Appl. Phys. Lett., vol. 94, p. 081113, 2009.
    [44]X. A. Cao, J. M. Teetsov, M. P. D’Evelyn, D. W. Merfeld, and C. H. Yan, “Electrical characteristics of InGaN/GaN light-emitting diodes grown on GaN and sapphire substrates,” Appl. Phys. Lett., vol. 85, pp. 7-9, 2004.
    [45]Y. Varshni, “Temperature Dependence of the Energy Gap in Semiconductors,” Physica, vol. 34, pp. 149-154, 1967.
    [46]W. B. Joyce and R. W. Dixon, “Thermal resistance of heterostructure lasers,” J. Appl. Phys., vol. 46, no. 2, pp. 855-863, 1975.
    [47]D. I. Florescu, V. M. Asnin, F. H. Pollak, R. J. Molnar, and C. E. C. Wood, “High spatial resolution thermal conductivity and Raman spectroscopy investigation of hydride vapor phase epitaxy grown n-GaN/sapphire(0001): Doping dependence,” J. Appl. Phys., vol. 88, no. 6, pp. 3295-3301, 2000.
    [48]Min-Hsun Hsieh, “Light emitting diode having an adhesive layer and manufacturing method thereof,” United States Patent Application Publication, 2005.

    無法下載圖示 本全文未授權公開
    QR CODE