研究生: |
李宣逸 Lee, Hsuan-Yi |
---|---|
論文名稱: |
鋯與鋁金屬有機骨架之溶劑脫附誘導結構快速轉換 Rapid desolvation-triggered structural transformation from amor-phous to crystalline of 2,6-NDC-based Zr- and Al-MOFs |
指導教授: |
林嘉和
Lin, Chia-Her |
口試委員: |
蔡明剛
Tsai, Ming-Kang 陳登豪 Chen, Teng-Hao 林嘉和 Lin, Chia-Her |
口試日期: | 2023/05/26 |
學位類別: |
碩士 Master |
系所名稱: |
化學系 Department of Chemistry |
論文出版年: | 2023 |
畢業學年度: | 111 |
語文別: | 中文 |
論文頁數: | 124 |
中文關鍵詞: | 金屬有機骨架 、快速長晶 、相轉變 |
英文關鍵詞: | metal organic framework, rapid crystallization, phase transformation |
研究方法: | 實驗設計法 |
DOI URL: | http://doi.org/10.6345/NTNU202300747 |
論文種類: | 學術論文 |
相關次數: | 點閱:129 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文主要在研究金屬有機框架 Metal – Organic Frameworks, MOF 的合成,特別注重於其快速結晶與相轉變的部分。研究步驟上,利用雙溶劑置換(Two Solvents Exchange,TOSE)與加熱抽真空(Heat under Vacuum,HEVA)可以達成 MOF 在合成時的溶劑脫附誘導結構快速轉換。每個步驟所獲得的樣品均有進行粉末 X 光繞射的鑑定,以便觀察其快速結晶與相轉變;也進行 77K 氮氣吸脫附的孔洞性質測試,結果顯示孔洞性質數據與文獻相近;樣品也進行 SEM 的測量,觀察其表面形貌與顆粒大小。
在快速結晶化的實驗樣品性質鑑定上,ZrNDC I(Naphthalenedicarboxylate acid = NDC)與 AlNDC 藉由 TOSE & HEVA 兩個步驟的處置,使樣品快速的從非晶相轉變為晶相;氣體吸脫附實驗結果顯示,AlNDC 的吸附量與比表面積與文獻數值相近,ZrNDC I 則需要其他實驗優化方式來達成與文獻數值相近之結果。在相轉變的研究中發現,ZRN-bcu結構可以在適當的步驟下轉為 ZrNDC II。
綜合而言,本論文研究透過 TOSE & HEVA 這兩種活化的方式克服了一些合成上的困難,可縮短反應時間,也更了解合成反應機制,且其獲得的孔洞性質結果也與水熱法的結果相近。額外的,研究中也成功的新發現 Zr-MOF 彼此之間有結構的相轉變。
This thesis focuses on the synthesis of MOF, with special emphasis on its rapid crystallization and phase transition. In this thesis, the synthesis of MOF is investigated by using Two Solvents Exchange (TOSE) and Heat under Vacuum (HEVA) to induce rapid structural transformation by solvent desorption. The samples obtained from each step were subjected to powder X-ray spectroscopy in order to observe the rapid crystallization and phase transition; the 77K nitrogen adsorption and desorption were also tested, and the results showed that the pore property data were similar to the literature; the samples were also subjected to SEM measurements to observe the surface morphology and particle size.
In the rapid crystallization experiments, ZrNDC I and AlNDC were rapidly transformed from amorphous phase to crystalline phase by the two steps of TOSE & HEVA. In the phase transition study, it was found that the ZRN-bcu structure could be converted to ZrNDC II with appropriate steps.
In summary, the present study overcomes some synthetic difficulties by using both TOSE & HEVA activation methods, shortens the reaction time and provides a better understanding of the synthetic reaction mechanism, and the results obtained for the pore properties are similar to those obtained by hydrothermal methods. In addition, a new structural phase transition between Zr-MOF and each other has been successfully discovered in the study.
(1) Moshoeshoe, M.; Silas Nadiye-Tabbiruka, M.; Obuseng, V. A Review of the Chemistry, Structure, Properties and Applications of Zeolites. American Journal of Materials Science 2017, 2017 (5), 196–221.
https://doi.org/10.5923/j.materials.20170705.12.
(2) Sing, K. S. W.; Everett, D. H.; Haul, R.; Moscou, L.; Pierotti, R. A.;Rouquerol, J.; Siemieniewska, T. REPORTING PHYSISORPTION DATA FOR GAS/SOLID SYSTEMS with Special Reference to the Determination of Surface Area and Porosity Pure Appl. Chem. 1985, 57,603 − 619.
https://doi.org/10.1351/pac198557040603
(3) Zhang, S.; Yang, Q.; Wang, C.; Luo, X.; Kim, J.; Wang, Z.; Yamauchi, Y. Porous Organic Frameworks: Advanced Materials in Analytical Chemistry. Advanced Science 2018, 5 (12), 1801116–1801140.
https://doi.org/10.1002/advs.201801116.
(4) Long, J. R.; Yaghi, O. M. The Pervasive Chemistry of Metal-Organic Frameworks. Chem Soc Rev 2009, 38 (5), 1213–1214.
https://doi.org/10.1039/b903811f.
(5) Zhou, H. C.; Long, J. R.; Yaghi, O. M. Introduction to Metal-Organic Frameworks. Chem Rev 2012, 112 (2), 673–674.
https://doi.org/10.1021/cr300014x.
(6) Pettinari, C.; Marchetti, F.; Mosca, N.; Tosi, G.; Drozdov, A. Application of Metal − Organic Frameworks. Polym Int 2017, 66 (6), 731–744.
https://doi.org/10.1002/pi.5315.
(7) Murray, L. J.; Dinc, M.; Long, J. R. Hydrogen Storage in Metal-Organic Frameworks. Chem Soc Rev 2009, 38 (5), 1294–1314.
https://doi.org/10.1039/b802256a.
(8) Han, S. S.; Mendoza-Cortés, J. L.; Goddard, W. A. Recent Advances on Simulation and Theory of Hydrogen Storage in Metal–Organic Frameworks and Covalent Organic Frameworks. Chem Soc Rev 2009, 38(5), 1460–1476.
https://doi.org/10.1039/b802430h.
(9) Li, J. R.; Kuppler, R. J.; Zhou, H. C. Selective Gas Adsorption and Separation in Metal-Organic Frameworks. Chem Soc Rev 2009, 38 (5), 1477–1504.
https://doi.org/10.1039/b802426j.
(10) Düren, T.; Bae, Y. S.; Snurr, R. Q. Using Molecular Simulation to Characterise Metal–Organic Frameworks for Adsorption Applications. Chem Soc Rev 2009, 38 (5), 1237–1247.
https://doi.org/10.1039/b803498m.
(11) Shimizu, G.; Vaidhyanathan, R.; Taylor, J. Phosphonate and Sulfonate Metal Organic Frameworks. Chem Soc Rev 2009, 38 (5), 1430–1449.
https://doi.org/10.1039/b802423p.
(12) Lee, J.; Farha, O. K.; Roberts, J.; Scheidt, K. A.; Nguyen, S. T.; Hupp, J. T. Metal-Organic Framework Materials as Catalysts. Chem Soc Rev 2009, 38(5), 1450–1459.
https://doi.org/10.1039/b807080f.
(13) Ma, L.; Abney, C.; Lin, W. Enantioselective Catalysis with Homochiral Metal-Organic Frameworks. Chem Soc Rev 2009, 38 (5), 1248–1256.
https://doi.org/10.1039/b807083k.
(14) Zhang, W.; Huang, H.; Liu, D.; Yang, Q.; Xiao, Y.; Ma, Q.; Zhong, C. A New Metal-Organic Framework with High Stability Based on Zirconium for Sensing Small Molecules. Microporous and Mesoporous Materials 2013, 171, 118–124.
https://doi.org/10.1016/j.micromeso.2013.01.003.
(15) Dolgopolova, E. A.; Rice, A. M.; Martin, C. R.; Shustova, N. B. Photochemistry and Photophysics of MOFs: Steps towards MOF-Based Sensing Enhancements. Chem Soc Rev 2018, 47 (13), 4710–4728.
https://doi.org/10.1039/c7cs00861a.
(16) Chen, H.; Xiao, Y.; Chen, C.; Yang, J.; Gao, C.; Chen, Y.; Wu, J.; Shen, Y.; Zhang, W.; Li, S.; Huo, F.; Zheng, B. Conductive MOF-Modified Separator for Mitigating the Shuttle Effect of Lithium-Sulfur Battery through a Filtration Method. ACS Appl Mater Interfaces 2019, 11 (12), 11459–11465.
https://doi.org/10.1021/acsami.8b22564.
(17) Gutiérrez, M.; Martin, C.; Kennes, K.; Hofkens, J.; Van der Auweraer, M.; Sánchez, F.; Douhal, A. New OLEDs Based on Zirconium Metal-Organic Framework. Adv Opt Mater 2018, 6 (6), 1701060–1701071.
https://doi.org/10.1002/adom.201701060.
(18) Usman, M.; Mendiratta, S.; Lu, K. L. Semiconductor Metal–Organic Frameworks: Future Low-Bandgap Materials. Advanced Materials 2017, 29 (6), 1605071–1605075.
https://doi.org/10.1002/adma.201605071.
(19) Wang, Y.-T.; McHale, C.; Wang, X.; Chang, C.-K.; u-Chun Chuang, Y.; Kaveevivitchai, W.; ˇ Miljanic, O. S.; Chen, T.-H. Cyclotetrabenzoin Acetate: A Macrocyclic Porous Molecular Crystal for CO2 Separations by Pressure Swing Adsorption. Angewandte Chemie 2021, 60, 14931–14937.
https://doi.org/10.26434/chemrxiv.13710046.v1.
(20) Lin, R. B.; Xiang, S.; Zhou, W.; Chen, B. Microporous Metal-Organic Framework Materials for Gas Separation. Chem 2020, 6 (2), 337–363.
https://doi.org/10.1016/j.chempr.2019.10.012.
(21) Liu, X.; Chee, S. W.; Raj, S.; Sawczyk, M.; Král, P.; Mirsaidov, U. ThreeStep Nucleation of Metal-Organic Framework Nanocrystals. Proc Natl Acad Sci U S A 2021, 118 (10), 2008880118–2008880124.
https://doi.org/10.1073/pnas.2008880118/-/DCSupplemental.
(22) Rubio-Martinez, M.; Avci-Camur, C.; Thornton, A. W.; Imaz, I.; Maspoch, D.; Hill, M. R. New Synthetic Routes towards MOF Production at Scale. Chem Soc Rev 2017, 46 (11), 3453–3480.
https://doi.org/10.1039/c7cs00109f.
(23) Shearer, G. C.; Chavan, S.; Bordiga, S.; Svelle, S.; Olsbye, U.; Lillerud, K. P. Defect Engineering: Tuning the Porosity and Composition of the MetalOrganic Framework UiO-66 via Modulated Synthesis. Chemistry of Materials 2016, 28 (11), 3749–3761.
https://doi.org/10.1021/acs.chemmater.6b00602.
(24) Bon, V.; Senkovska, I.; Weiss, M. S.; Kaskel, S. Tailoring of Network Dimensionality and Porosity Adjustment in Zr- and Hf-Based MOFs. CrystEngComm 2013, 15 (45), 9572–9577.
https://doi.org/10.1039/c3ce41121d.
(25) Han, G.; Wang, K.; Peng, Y.; Zhang, Y.; Huang, H.; Zhong, C. Enhancing Higher Hydrocarbons Capture for Natural Gas Upgrading by Tuning van Der Waals Interactions in Fcu-Type Zr-MOFs. Ind Eng Chem Res 2017, 56(49), 14633–14641.
https://doi.org/10.1021/acs.iecr.7b03341.
(26) Zhang, W.; Huang, H.; Liu, D.; Yang, Q.; Xiao, Y.; Ma, Q.; Zhong, C. A New Metal-Organic Framework with High Stability Based on Zirconium for Sensing Small Molecules. Microporous and Mesoporous Materials 2013, 171, 118–124.
https://doi.org/10.1016/j.micromeso.2013.01.003.
(27) Kim, H.; Kim, D.; Moon, D.; Choi, Y. N.; Baek, S. Bin; Lah, M. S. Symmetry-Guided Syntheses of Mixed-Linker Zr Metal-Organic Frameworks with Precise Linker Locations. Chem Sci 2019, 10 (22), 5801–5806.
https://doi.org/10.1039/c9sc01301f.
(28) Loiseau, T.; Mellot-Draznieks, C.; Muguerra, H.; Férey, G.; Haouas, M.; Taulelle, F. Hydrothermal Synthesis and Crystal Structure of a New ThreeDimensional Aluminum-Organic Framework MIL-69 with 2,6-Naphthalenedicarboxylate (Ndc), Al(OH)(Ndc)·H2O. Comptes Rendus Chimie 2005, 8 (3–4), 765–772.
https://doi.org/10.1016/j.crci.2004.10.011.
(29) Xu, M.; Meng, S. S.; Liang, H.; Gu, Z. Y. A Metal-Organic Framework with Tunable Exposed Facets as a High-Affinity Artificial Receptor for Enzyme Inhibition. Inorg Chem Front 2020, 7 (19), 3687–3694.
https://doi.org/10.1039/d0qi00827c.
(30) Forgan, R. S. Modulated Self-Assembly of Metal-Organic Frameworks. Chem Sci 2020, 11 (18), 4546–4562.
https://doi.org/10.1039/d0sc01356k.
(31) Schaate, A.; Roy, P.; Godt, A.; Lippke, J.; Waltz, F.; Wiebcke, M.; Behrens, P. Modulated Synthesis of Zr-Based Metal-Organic Frameworks: From Nano to Single Crystals. Chemistry - A European Journal 2011, 17 (24), 6643–6651.
https://doi.org/10.1002/chem.201003211.
(32) Cavka, J. H.; Jakobsen, S.; Olsbye, U.; Guillou, N.; Lamberti, C.; Bordiga, S.; Lillerud, K. P. A New Zirconium Inorganic Building Brick Forming Metal Organic Frameworks with Exceptional Stability. J Am Chem Soc2008, 130 (42), 13850–13851.
https://doi.org/10.1021/ja8057953.
(33) Marshall, C. R.; Staudhammer, S. A.; Brozek, C. K. Size Control over Metal-Organic Framework Porous Nanocrystals. Chemical Science. 2019,10 (41), 9396–9408.
https://doi.org/10.1039/c9sc03802g.
(34) Guo, H.; Zhu, Y.; Wang, S.; Su, S.; Zhou, L.; Zhang, H. Combining Coordination Modulation with Acid-Base Adjustment for the Control over Size of Metal-Organic Frameworks. Chemistry of Materials 2012, 24 (3), 444–450.
https://doi.org/10.1021/cm202593h.
(35) Yang, L.; Zhao, T.; Boldog, I.; Janiak, C.; Yang, X. Y.; Li, Q.; Zhou, Y. J.; Xia, Y.; Lai, D. W.; Liu, Y. J. Benzoic Acid as a Selector-Modulator in the Synthesis of MIL-88B(Cr) and Nano-MIL-101(Cr). Dalton Transactions2019, 48 (3), 989–996.
https://doi.org/10.1039/c8dt04186e.
(36) Bara, D.; Wilson, C.; Mörtel, M.; Khusniyarov, M. M.; Ling, S.; Slater, B.; Sproules, S.; Forgan, R. S. Kinetic Control of Interpenetration in FeBiphenyl-4,4′-Dicarboxylate Metal-Organic Frameworks by Coordination and Oxidation Modulation. J Am Chem Soc 2020, 141 (20), 8346–8357.
https://doi.org/10.1021/jacs.9b03269.
(37) Dissegna, S.; Epp, K.; Heinz, W. R.; Kieslich, G.; Fischer, R. A. Defective Metal-Organic Frameworks. Advanced Materials 2018, 30 (37), 1704501–1704523.
https://doi.org/10.1002/adma.201704501.
(38) Fang, Z.; Bueken, B.; De Vos, D. E.; Fischer, R. A. Defektmanipulierte Metall-Organische Gerüste. Angewandte Chemie 2015, 127 (25), 7340–7362. https://doi.org/10.1002/ange.201411540.
(39) Shearer, G. C.; Chavan, S.; Bordiga, S.; Svelle, S.; Olsbye, U.; Lillerud, K. P. Defect Engineering: Tuning the Porosity and Composition of the Metal Organic Framework UiO-66 via Modulated Synthesis. Chemistry of Materials 2016, 28 (11), 3749–3761.
https://doi.org/10.1021/acs.chemmater.6b00602.
(40) Lo, S. H.; Feng, L.; Tan, K.; Huang, Z.; Yuan, S.; Wang, K. Y.; Li, B. H.; Liu, W. L.; Day, G. S.; Tao, S.; Yang, C. C.; Luo, T. T.; Lin, C. H.; Wang, S. L.; Billinge, S. J. L.; Lu, K. L.; Chabal, Y. J.; Zou, X.; Zhou, H. C. Rapid Desolvation-Triggered Domino Lattice Rearrangement in a Metal–Organic Framework. Nat Chem 2020, 12 (1), 90–97.
https://doi.org/10.1038/s41557-019-0364-0.
(41) Mondloch, J. E.; Karagiaridi, O.; Farha, O. K.; Hupp, J. T. Activation of Metal-Organic Framework Materials. CrystEngComm 2013, 15 (45), 9258–9264.
https://doi.org/10.1039/c3ce41232f.
(42) Zhang, X.; Chen, Z.; Liu, X.; Hanna, S. L.; Wang, X.; Taheri-Ledari, R.; Maleki, A.; Li, P.; Farha, O. K. A Historical Overview of the Activation and Porosity of Metal-Organic Frameworks. Chem Soc Rev 2020, 49 (20), 7406–7427.
https://doi.org/10.1039/d0cs00997k.
(43) Cooper, A. I. Porous Materials and Supercritical Fluids. Advanced Materials 2003, 15 (13), 1049–1059.
https://doi.org/10.1002/adma.200300380.
(44) Qian, L.; Zhang, H. Controlled Freezing and Freeze Drying: A Versatile Route for Porous and Micro-/Nano-Structured Materials. Journal of Chemical Technology and Biotechnology 2011, 86 (2), 172–184.
https://doi.org/10.1002/jctb.2495.
(45) Baruah, J. B. Naphthalenedicarboxylate Based Metal Organic Frameworks: Multifaceted Material. Coord Chem Rev 2021, 437.
https://doi.org/10.1016/j.ccr.2021.213862.
(46) Guo, X. G.; Yang, W. Bin; Wu, X. Y.; Lin, L.; Lu, C. Z. 3D/3D Hetero Interpenetrating Diamondoid Framework and Homo-Interpenetrating Pcu Network by a One-Pot Reaction. Eur J Inorg Chem 2014, No. 15, 2481–2485.
https://doi.org/10.1002/ejic.201402128.
(47) Kalita, D.; Baruah, J. B. Acid Inclusion Properties of Helical Self Assembly of a 5,5′-Biquinoline Derivative. Cryst Growth Des 2011, 11 (11), 5131–5138.
https://doi.org/10.1021/cg201052k.
(48) Alexandropoulos, D. I.; Fournet, A.; Cunha-Silva, L.; Mowson, A. M.; Bekiari, V.; Christou, G.; Stamatatos, T. C. Fluorescent Naphthalene Diols as Bridging Ligands in LnIII Cluster Chemistry: Synthetic, Structural, Magnetic, and Photophysical Characterization of LnIII8 “Christmas Stars.” Inorg Chem 2014, 53 (11), 5420–5422.
https://doi.org/10.1021/ic500806n.
(49) Hernández-Gil, J.; Ferrer, S.; Cabedo, N.; López-Gresa, M. P.; Castiñeiras, A.; Lloret, F. Two Copper Complexes from Two Novel NaphthaleneSulfonyl-Triazole Ligands: Different Nuclearity and Different DNA Binding and Cleavage Capabilities. J Inorg Biochem 2013, 125, 50–63.
https://doi.org/10.1016/j.jinorgbio.2013.04.007.
(50) Zhao, J.; Yu, H.; Liu, G.; Lin, H.; Wang, X.; Luan, J.; Chen, B. Five Naphthalene-Amide-Bridged Ni(Ii) Complexes: Electrochemistry, Bifunctional Fluorescence Responses, Removal of Contaminants and Optimization by CVD. CrystEngComm 2020, 22 (8), 1330–1339.
https://doi.org/10.1039/c9ce01764j.
(51) Xie, Y. X.; Zhao, W. N.; Li, G. C.; Liu, P. F.; Han, L. A Naphthalenediimide-Based Metal-Organic Framework and Thin Film Exhibiting Photochromic and Electrochromic Properties. Inorg Chem 2016, 55 (2), 549–551.
https://doi.org/10.1021/acs.inorgchem.5b02480.
(52) Liu, Y.; Hori, A.; Kusaka, S.; Hosono, N.; Li, M.; Guo, A.; Du, D.; Li, Y.; Yang, W.; Ma, Y.; Matsuda, R. Microwave-Assisted Hydrothermal Synthesis of [Al(OH)(1,4-NDC)] Membranes with Superior Separation Performances. Chem Asian J 2019, 14 (12), 2072–2076.
https://doi.org/10.1002/asia.201900152.
(53) Nakahama, M.; Reboul, J.; Yoshida, K.; Furukawa, S.; Kitagawa, S. LGlutamic Acid Release from a Series of Aluminum-Based Isoreticular Porous Coordination Polymers. J Mater Chem B 2015, 3 (20), 4205–4212.
https://doi.org/10.1039/c5tb00346f.
(54) Vodak, D. T.; Braun, M. E.; Kim, J.; Eddaoudi, M.; Yaghi, O. M. Metal—Organic Frameworks Constructed from Pentagonal Antiprismatic and Cuboctahedral Secondary Building Units. Chemical Communications2001, 1 (24), 2534–2535.
https://doi.org/10.1039/b108684g.
(55) Senkovska, I.; Hoffmann, F.; Fröba, M.; Getzschmann, J.; Böhlmann, W.; Kaskel, S. New Highly Porous Aluminium Based Metal-Organic Frameworks: Al(OH)(Ndc) (Ndc = 2,6-Naphthalene Dicarboxylate) and Al(OH)(Bpdc) (Bpdc = 4,4′-Biphenyl Dicarboxylate). Microporous and Mesoporous Materials 2009, 122 (1–3), 93–98.
https://doi.org/10.1016/j.micromeso.2009.02.020.
(56) Klein, N.; Herzog, C.; Sabo, M.; Senkovska, I.; Getzschmann, J.; Paasch, S.; Lohe, M. R.; Brunner, E.; Kaskel, S. Monitoring Adsorption-Induced Switching by 129Xe NMR Spectroscopy in a New Metal-Organic Framework Ni2(2,6-Ndc)2(Dabco). Physical Chemistry Chemical Physics2010, 12 (37), 11778–11784.
https://doi.org/10.1039/c003835k.
(57) Comotti, A.; Bracco, S.; Sozzani, P.; Horike, S.; Matsuda, R.; Chen, J.; Takata, M.; Kubota, Y.; Kitagawa, S. Nanochannels of Two Distinct Cross Sections in a Porous Al-Based Coordination Polymer. J Am Chem Soc 2008, 130 (41), 13664–13672.
https://doi.org/10.1021/ja802589u.
(58) Yang, X.; Yan, N.; Zhou, W.; Zhang, H.; Li, X.; Zhang, H. Sulfur Embedded in One-Dimensional French Fries-like Hierarchical Porous Carbon Derived from a Metal-Organic Framework for High Performance Lithium-Sulfur Batteries. J Mater Chem A Mater 2015, 3 (29), 15314–15323.
https://doi.org/10.1039/c5ta03013g.
(59) Wang, Q.; Astruc, D. State of the Art and Prospects in Metal-Organic Framework (MOF)-Based and MOF-Derived Nanocatalysis. Chem Rev2020, 120 (2), 1438–1511.
https://doi.org/10.1021/acs.chemrev.9b00223.
(60) Botao Liu; Kumar Vikrant; Ki-Hyun Kim; Vanish Kumar; Suresh Kumar Kailasa. Critical Role of Water Stability in Metal–Organic Frameworks and Advanced Modification Strategies for the Extension of Their Applicability. Environ Sci Nano 2020, 7, 1319–1347.
(61) Xie, L. H.; Xu, M. M.; Liu, X. M.; Zhao, M. J.; Li, J. R. Hydrophobic Metal–Organic Frameworks: Assessment, Construction, and Diverse Applications. Advanced Science 2020, 7 (4), 1901758–1901801.
https://doi.org/10.1002/advs.201901758.
(62) Lee, D. Y.; Lim, I.; Shin, C. Y.; Patil, S. A.; Lee, W.; Shrestha, N. K.; Lee, J. K.; Han, S. H. Facile Interfacial Charge Transfer across Hole Doped Cobalt-Based MOFs/TiO2 Nano-Hybrids Making MOFs Light Harvesting Active Layers in Solar Cells. J Mater Chem A Mater 2015, 3 (45), 22669–22676.
https://doi.org/10.1039/c5ta07180a.
(63) Rasero-Almansa, A. M.; Corma, A.; Iglesias, M.; Sánchez, F. Zirconium Materials from Mixed Dicarboxylate Linkers: Enhancing the Stability for Catalytic Applications. ChemCatChem 2014, 6 (12), 3426–3433.
https://doi.org/10.1002/cctc.201402546.
(64) Gutierrez, M.; Cohen, B.; Sánchez, F.; Douhal, A. Photochemistry of Zr Based MOFs: Ligand-to-Cluster Charge Transfer, Energy Transfer and Excimer Formation, What Else Is There? Physical Chemistry Chemical Physics 2016, 18 (40), 27761–27774.
https://doi.org/10.1039/c6cp03791g.
(65) Fan, W.; Wang, K. Y.; Welton, C.; Feng, L.; Wang, X.; Liu, X.; Li, Y.; Kang, Z.; Zhou, H. C.; Wang, R.; Sun, D. Aluminum Metal–Organic Frameworks: From Structures to Applications. Coord Chem Rev 2023, 489.
https://doi.org/10.1016/j.ccr.2023.215175.
(66) López-Olvera, A.; Pioquinto-García, S.; Antonio Zárate, J.; Diaz, G.; Martínez-Ahumada, E.; Obeso, J. L.; Martis, V.; Williams, D. R.; LaraGarcía, H. A.; Leyva, C.; Soares, C. V.; Maurin, G.; Ibarra, I. A.; DávilaGuzmán, N. E. SO2 Capture in a Chemical Stable Al(III) MOF: DUT-4 as an Effective Adsorbent to Clean CH4. Fuel 2022, 322, 124213–124217.
https://doi.org/10.1016/j.fuel.2022.124213.
(67) Yuan, S.; Lu, W.; Chen, Y. P.; Zhang, Q.; Liu, T. F.; Feng, D.; Wang, X.; Qin, J.; Zhou, H. C. Sequential Linker Installation: Precise Placement of Functional Groups in Multivariate Metal-Organic Frameworks. J Am Chem Soc 2015, 137 (9), 3177–3180.
https://doi.org/10.1021/ja512762r.
(68) Xie, L. S.; Skorupskii, G.; Dincǎ, M. Electrically Conductive MetalOrganic Frameworks. Chem Rev 2020, 120 (16), 8536–8580.
https://doi.org/10.1021/acs.chemrev.9b00766.
(69) Shen, Y.; Duan, R.; Qian, J.; Li, Q. Preparation of Highly Stable DUT-52 Materials and Adsorption of Dichromate Ions in Aqueous Solution. ACS Omega 2022.
https://doi.org/10.1021/acsomega.2c00373.
(70) Tran, C. C.; Dong, H. C.; Truong, V. T. N.; Bui, T. T. M.; Nguyen, H. N.; Nguyen, T. A. T.; Dang, N. N.; Nguyen, M. V. Enhancing the Remarkable Adsorption of Pb2+ in a Series of Sulfonic-Functionalized Zr-Based MOFs: A Combined Theoretical and Experimental Study for Elucidating the Adsorption Mechanism. Dalton Transactions 2022, 51 (19), 7503–7516.
https://doi.org/10.1039/d2dt01009g.