簡易檢索 / 詳目顯示

研究生: 彭雅芳
Peng, Ya-Fang
論文名稱: 參數化色彩意象自動商品配色與分析
Automatic Product Color Scheme Using Parametric Color Images with Analysis
指導教授: 周遵儒
Chou, Tzren-Ru
學位類別: 碩士
Master
系所名稱: 圖文傳播學系
Department of Graphic Arts and Communications
論文出版年: 2019
畢業學年度: 108
語文別: 中文
論文頁數: 84
中文關鍵詞: 色彩意象色彩調和自動配色自然語言處理
英文關鍵詞: Color Image, Color Harmony, Automatic Color Scheme, Natural Language Processing
DOI URL: http://doi.org/10.6345/NTNU201901174
論文種類: 學術論文
相關次數: 點閱:203下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 配色是商品設計過程中重要的一環,經常耗費許多時間溝通修改,然而時效性是今日幾乎所有商業活動的必備需求,因此即時的設計需求配色建議是亟待解決的議題。本研究應用小林重順在色彩意象尺度(Color Image Scale)(Kobayashi, 1991)中所列舉的色彩意象(Color Images)(Kobayashi, 2006)為設計參數,開發「色彩意象抽取演算法」,用來抽取描述語句中三個隱含的色彩意象,再收集這些意象所對應的大量色彩組合,透過「多意象色彩調和演算法」篩選出符合調和特性的部分,建立「參數化色彩意象配色系統」,使得所設計的商品在色彩呈現上具有描述語句所意圖傳達的色彩意象。
      為驗證上述兩個演算法和整體系統的輸入輸出對應結果是否符合期望,本研究設計三組實驗,使用問卷調查法評估所設計方法的成效,三組實驗分別是:A、「描述語句輸入、色彩意象輸出」評估;B、「色彩意象輸入、商品配色輸出」評估;C、「描述語句輸入、商品配色輸出」評估,探討演算法與系統的精確度和召回率,結果如下:A實驗的精確度最高為70%(色彩意象輸出第一名即包含期望意象),而召回率最高為55%(前兩名色彩意象輸出包含期望意象),顯示僅使用「色彩意象抽取演算法」時建議可參考前兩名色彩意象輸出。B實驗及C實驗的的精確度皆為80%,「多意象色彩調和演算法」與「參數化色彩意象配色系統」能夠提供相對滿足語言和配色的轉換需求。設計背景與非設計背景的受測者在問卷結果的表現上沒有顯著的差異。總結來說,雖然在意象抽取的部分還有很大的進步空間,但在色彩意象與配色的對應上具有很高的可行性。

    Color scheme is an important part of the product design process. It often takes a lot of time to communicate and modify. However, timeliness is an essential requirement for almost all business activities today, so the proposal to provide color scheme immediately is an urgent issue. This study applies the color image (Kobayashi, 2006) listed in the Color Image Scale (Kobayashi, 1991) as a design parameter to develop a "color image extraction algorithm". The algorithm is used to extract three underlying color images from the description, and collect a large number of color combinations corresponding to these images, and pick out the parts that conform to the feature of color harmony through the "multi-images color harmony algorithm" to establish a "parameterized color image and color scheme system". Let the color of product have the color images that the description intends to convey.
      In order to verify the effectiveness of the above two algorithms and the system, this study designed three sets of experiments, using questionnaires to evaluate the effectiveness of the methods, the three sets of experiments are: A, "description input, color image output “; B, "color images input, color scheme output"; C, "description input, color scheme output", to explore the accuracy and recall of the algorithms and the system, the results are as follows: Accuracy of experiment A is up to 70% (output the first color image contains the expected images), and the recall is up to 55% (output the top two color images contain the expected images). It is recommended to refer to the top two color images outputs when using the "Color Image Extraction Algorithm". The accuracy of both B and C experiments is 80%. The "multi-images color harmony algorithm" and the " parameterized color image and color scheme system " can provide the conversion requirements for language and color scheme. Subjects with design background and non-design background did not differ significantly in the performance of the questionnaire results. In summary, although there is still a lot to improve in the images of extraction, it is highly feasible in the correspondence between color images and color scheme.

    摘要 i Abstract ii 目錄 iii 表目錄 v 圖目錄 vi 一、緒論 1  1-1研究背景與動機 1  1-2研究目的與問題 3  1-3研究範圍與限制 4  1-4名詞釋義 4  1-5研究流程 5 二、文獻探討 7  2-1色彩意象及設計 7  2-2色彩意象尺度 14  2-3自動配色方法 17  2-4文獻探討小結 24 三、研究方法 25  3-1研究架構 25  3-2研究工具 25  3-3自動配色系統開發 27  3-4問卷調查實驗 39 四、結果與分析討論 46  4-1自動配色系統開發成果 46  4-2問卷調查實驗結果與分析討論 47 五、結論與建議 54  5-1結論 54  5-2建議 55 參考文獻 57 附件一、問卷完整題庫 62 附件二、問卷調查1 64 附件三、問卷調查2 67 附件四、問卷調查3 70 附件五、實驗A「描述語句輸入、色彩意象輸出」比對統計(精確度) 73 附件六、實驗A「描述語句輸入、色彩意象輸出」比對統計:「色彩意象輸出」第一名包含「期望意象」第一名的部分(召回率) 75 附件七、實驗A「描述語句輸入、色彩意象輸出」比對統計:「色彩意象輸出」前兩名包含「期望意象」前兩名的部分(召回率) 77 附件八、實驗A「描述語句輸入、色彩意象輸出」比對統計:「色彩意象輸出」前三名包含「期望意象」的部分(召回率) 79 附件九、實驗B「色彩意象輸入、商品配色輸出」期望色彩選項加總 81 附件十、實驗C「描述語句輸入、商品配色輸出」期望色彩選項加總 83

    1. Beaird, J. (2010). The principles of beautiful web design. Melbourne, AU: SitePoint.
    2. Chen, R., Hua, Q., Chang, Y., Wang, B., Zhang, L., & Kong, X. (2018). A Survey of Collaborative Filtering-Based Recommender Systems: From Traditional Methods to Hybrid Methods Based on Social Networks. IEEE Access 6(2018). 64301-64320. doi: 10.1109/ACCESS.2018.2877208.
    3. Fraser, T., & Banks, A. (2004). Designer's color manual: The complete guide to color theory and application. San Francisco, CA: Chronicle Books.
    4. Itten, J. (1986). The Color Star Stencils with Booklet. Canada, NA: John Wiley & Sons Inc.
    5. Jahanian, A., Liu, J., Lin, Q., Tretter, D., O’Brien-Strain, E., Lee, S. C., Lyons, N., & Allebach, J. (2013). Recommendation system for automatic design of magazine covers. in Proc. IUI '13 Int. Conf, IUI Press (95-106).
    6. Jahanian, A., Liu, J., Tretter, D. R., Lin, Q., Damera-Venkata, N., O’Brien-Strain., Lee, S., Fan, J., & Allebach, J. P. (2012). Automatic design of magazine covers. Proc. SPIE 8302 (1-8).
    7. Kagawa, T., Nishino, H., & Utsumiya, K. (2003). A color design assistant based on user's sensitivity. in Proc. SMC’03 Int. Conf (153-159). IEEE.
    8. Kobayashi, S. (1981). The aim and method of the color image scale. Color Research & Application, 6(1981). 93-107. doi: 10.1002/col.5080060210.
    9. Kuhna, M., Kivelä, I., & Oittinen, P. (2012). Semi-automated magazine layout using content-based image features. in Proc. SMC’03 Int. Conf, ACM Press (379-388).
    10. Labrecque, L., & Milne, G. (2011). Exciting red and competent blue: the importance of color in marketing. Journal of The Academy of Marketing Science, 40(5), doi: 10.1007/s11747-010-0245-y.
    11. Lee, J. H. & Qian, W. (2004). Color Your Feeling. Recent Advances in Design & Decision Support Systems in Architecture and Urban Planning, (113-125). Dordrecht: Kluwer Academic Publishers.
    12. Liu, F., Wei, F., Yu, K., & Wu, X. (2017). Sentiment classification of reviews on automobile websites by combining Word2Vec and dependency parsing. in Proc. SmartCom Int. Conf. Lecture Notes in Computer Science (LNCS 17) (pp. 206-221). Springer Cham.
    13. Mikolov, T., Chen, K., Corrado, G. & Dean, J. (2013). Efficient Estimation of Word Representations in Vector Space. CoRR, abs/1301.3781.
    14. Mikolov, T., Chen, K., Corrado, G. & Dean, J. (2013). Efficient Estimation of Word Representations in Vector Space. CoRR, abs/1301.3781.
    15. Mirnczuk, M. M., & Protasiewicz, J. (2018). A recent overview of the state-of-the-art elements of text classification. Expert Systems with Applications, 106(15) , 36-54. doi: 10.1016/j.eswa.2018.03.058
    16. Moretti, G., Lyons, P., & Marsland, S. (2003). Computational production of colour harmony. Part 1: A prototype colour harmonization tool. Color Research & Appliction, 38(3), 203-217. doi: 10.1002/col.20736.
    17. Munsell, A. H. (1912). A pigment color system and notation. The American Journal of Psychology, 23(2), 236-244. doi: 10.2307/1412843.
    18. Musto, C., Semeraro, Gemmis, M.-de., Semeraro, G., & Lops, P. (2016). Learning Word Embeddings from Wikipedia for Content-Based Recommender Systems. In: N. Ferro et al. (Eds.): Advances in Information Retrieval. ECIR 2016. Lecture Notes in Computer Science (729-734).Springer, Cham.
    19. Na, N., & Suk, H. J. (2014). The emotional characteristics of white for applications of product color design. Industrial Applications of Affective Engineering, 8(2014), 253-264. doi: 10.1007/978-3-319-04798-0_20.
    20. Osgood, C.E., Suci, G.J., & Tannenbaum, P.H. (1967). The measurement of meaning. Urbana, IL: University of Illinois Press.
    21. Ou, L.-C., Luo, M. R., Sun, P.-L., Hu, N.-C., Chen, H.-S., Guan, S.-S., Woodcock, J. L., Caivno, R., Huertas, A., Tremeau, M., Billger, H., Izadan, H., & Richter, K. (2010). A Cross-Cultural Comparison of Colour Emotion for Two-Colour Combinations. Color Research & Application, 37(1), 23-43. doi: 10.1002/col.20648.
    22. Ou, L.-C., Luo, M. R., Woodcock, A., & Wright, A. (2004a). A study of colour emotion and colour preference. Part I: Colour emotions for single colours. Color Research & Application, 29(3), 232-240. doi: 10.1002/col.20010.
    23. Ou, L.-C., Luo, M. R., Woodcock, A., & Wright, A. (2004b). A study of colour emotion and colour preference. Part II: Colour emotions for two-colour combinations. Color Research & Application, 29(4), 292-298. doi: 10.1002/col.20024.
    24. Ou, L.-C., Luo, M. R., Woodcock, A., & Wright, A. (2004c). A study of colour emotion and colour preference. Part III: Colour preference modeling. Color Research & Application, 29(5), 381-389. doi: 10.1002/col.20047.
    25. Simpson, J. & Wwiner, E (Eds.)(1989). The Oxford English Dictionary (2nd ed.). Oxford, England: Oxford University Press.
    26. Sugie, K., Tanaka, K., Hara, H., Hayashi, A., & Yamada, J. (2012). 1000 Ideas of Color. Taiwan, Taipei: Delight, 2012.
    27. Wang, R., Chen, G., & Suia, X. (2018). Multi label text classification method based on co-occurrence latent semantic vector space. Procedia Computer Science, 131(2018), 756-764. doi: 10.1016/j.procs.2018.04.321.
    28. Wang, W.-N., & Yu, Y.-L. (2005). Image emotional semantic query based on color semantic description. Proceedings of the Fourth International Conference on Machine Learning and Cybernetics, Guangzhou (pp. 18-21). IEEE.
    29. Wang, X., Liu, H., Yang, Z., Chu, J., Yao, L., Zhao, Z., & Zuo, B. (2017). Research and Implementation of a Multi-label Learning Algorithm for Chinese Text Classification, 2017 3rd International Conference on Big Data Computing and Communications, Chengdu (pp. 68-76). IEEE.
    30. Wei, S.-T., Ou, L.-C., Luo, M. R., & Hutchings, J. B. (2014). Package design: colour harmony and consumer expectations. International Journal of Design, 8(1), 109-126.
    31. Youngjin.com. (2007). The Color for Designer. Taiwan, Taipei: DrMaster Press.
    32. Zeng, S.-H., & Dai, C.-F. (2016). Sentiment analysis of Chinese online reviews based on Word2vec and DBN. 2016 International Conference on Mathematical, Computational and Statistical Sciences and Engineering (pp. 153-159).
    33. 文化部(2018)。臺灣文化創意產業發展年報。台北市:文化部。
    34. 成同社(譯)(1989)。入門色彩心理學(原作者:瀧本孝雄、藤澤英昭)。北京市:科學技術文獻出版。(原著出版年:1977)。
    35. 李銘龍(1994)。應用色彩學。臺北市:藝風堂出版。
    36. 周耀庭(2010)。網站配色決策支援系統設計與實作-以企業識別系統商標標準色為例(未出版碩士論文)。國立交通大學,新竹市。
    37. 林昆範(2008)。色彩原論。新北市:全華圖書出版。
    38. 林書堯(1993)。色彩學。臺北市:三民書局。
    39. 林書堯(1993)。色彩學。臺北市:三民書局出版。
    40. 南開大學色彩與公共藝術研究中心(譯)(2006)。色彩形象座標(原作者:小林重順)。北京市:人民美術出版社。
    41. 徐照夫(2015)。色彩原理。新北市:博客創意出版。
    42. 高淑玲(2004)。色彩認知與配色感覺之研究-以改變配色形狀和面積比對對色彩意象影響為例(未出版碩士論文)。國立雲林科技大學,雲林縣。
    43. 張春興(2000)。張氏心理學辭典。臺北市:東華書局出版。
    44. 郭曉媚(2015)。中文語意分析應用於部落格自動配色系統之研究(未出版碩士論文)。國立臺灣師範,臺北市。
    45. 陳佩琳(2009)。設計師色彩意象配色之輔助系統研究(未出版碩士論文)。國立雲林科技大學,雲林縣。
    46. 陳俊宏、楊東民(2004)。視覺傳達設計概論。臺北市:全華科技出版。
    47. 黃書倩(譯)(2003)。色彩學的基礎(原作者:山中俊夫)。臺北市:六和出版社。
    48. 楊文斌(2007)。以案例式擷取機制建立台灣色彩意象輔助設計系統(未出版碩士論文)。國立雲林科技,雲林縣。
    49. 管倖生、林彥呈(2002)。以感性工學程序建構網頁設計系統之研究。設計學報,7(1),59-74。
    50. 蔡淑娟(2003)。類神經遺傳演算法應用於產品配色系統之建立研究(未出版碩士論文)。國立成功大學,臺南市。
    51. 鄭柏左(2004)。色彩理論與數位影像。臺北市:新文京出版。
    52. 鄭國欲、林磐聳(2002)。 色彩計畫。臺北市:藝風堂出版。
    53. 鄭國裕、林磐聳(2002)。色彩計劃(第二版)。臺北市:藝風堂出版。
    54. 鄭國裕、林磐聳(2002)。色彩計劃。臺北市:藝風堂出版。
    55. 戴孟宗(2011)。現代色彩學。新北市:全華圖書出版。
    56. 戴孟宗(2016)。現代色彩學-色彩理論、感知與應用。新北市:全華圖書出版。
    57. 戴孟宗、王韻慈(2013)。電子產業企業標誌配色的評估。中華印刷科技年報,2013,412-418。
    58. 戴孟宗、廖信、楊宜瑄(2010)。色彩形容詞與感知強度指標之研究。中華印刷科技年報,2010,230-246。
    59. 戴孟宗、廖彥筑、陳姵君、柯奏任(2012)。中英字型意象之研究。中華印刷科技年報,2012,673-691。
    60. 謝翠如(2009)。中文色彩詞彙及語言色彩類別空間(未出版博士論文)。國立交通大學,新竹市。
    61. 簡穩容(2013)。色彩調和理論於網頁自動配色應用之研究(未出版碩士論文)。國立臺灣師範大學,臺北市。
    62. 魏碩廷、陳鴻興、徐明景、李文淵、謝翠如、吳瑞卿、孫沛立(2018)。色彩新論:從心理設計到科學應用。臺北市:五南書局出版。
    63. 龐慶康(譯)(1998)。色彩心理學-追隨牛頓和歌德的腳步(原作者:大山正)。臺北市:牧村圖書。(原著出版年:1994)。

    下載圖示
    QR CODE