研究生: |
李奇霞 Li chi hsia |
---|---|
論文名稱: |
棘黴素與核酸之協同性結合 Cooperative binding between echinomycin and DNA |
指導教授: |
黃文彰
Huang, Wen-Chang |
學位類別: |
碩士 Master |
系所名稱: |
化學系 Department of Chemistry |
論文出版年: | 2001 |
畢業學年度: | 89 |
語文別: | 中文 |
論文頁數: | 110 |
中文關鍵詞: | 棘黴素 、核酸 、協同性 |
英文關鍵詞: | echinomycin, DNA, cooperative |
論文種類: | 學術論文 |
相關次數: | 點閱:304 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本實驗利用1H 核磁共振光譜(NMR)、圓二極光譜(CD)及分子模擬,來研究棘黴素與DNA所形成的複合物結構。所設計的DNA序列[d(ATCCGCACCTAT) ·d(ATAGGTGCGGAT)]中,含有兩個藥物的結合位置,依電泳足跡法所得結果,分別是較強的結合位置CCGC及較弱的結合位置ACCT。
由NMR光譜發現加入藥物之後,G5、G19、G21、G22等鹼基的亞胺基氫,化學位移有上移的變化,顯示藥物已結合至CCGC位置。而在ACCT位置,即使藥物與DNA濃度比提升至2.0時,其結合度仍偏低。而由CD所得結果顯示,此DNA在藥物與DNA濃度比約為1.625~1.75時,其結合度已達飽和。
為了進一步了解兩個藥物的結合位置間的關係,因此利用分子模擬技術,來探討協同性。結果顯示藥物結合至CCGC位置之後,引起此強結合位置結構的改變,亦使鄰近之弱結合位置ACCT的結構,更趨近於複合物狀態。此乃兩個結合位置具有協同性。
The complex formed between the cyclic octadepsipeptide antibiotic echinomycin and the DNA is studied by proton NMR、CD and molecular mechanics techniques. The designed DNA, [d (ATCCGCACCTAT)· d (ATAGGTGCGGAT)], contains a strong binding site CCGC with an adjacent weak binding site ACCT.
As revealed by NMR spectra, the upfield shift of the G5, G19, G21, G22 imino proton peaks indicate that the strong binding site CCGC is bound by echinomycin. While the results of CD, further confirm that the DNA fragment is saturated with echinomycin as the drug/DNA ratio rises to 1.625~1.75.
Molecular modeling technique is used to investigate cooperative binding of echinomycin between two binding sites. The results demonstrate that the binding of echinomycin to the CCGC site induce the structure of ACCT site adopt a comformation more suitable for drug binding.
Bailly, C & Waring, M. J. (1995) J. Am. Chem. Soc. 117, 7311-7316
Bailly, C., Hamy, F. & Waring, M. D. (1996) Biochemistry 35 , 1150-1661
Baleja, J. D., Pon, R.T. & Sykes, B.D. (1990a) Biochemistry 29 , 4828-4839
Baleja, J. D., Germann, M. W., van de Sande, J. H. & Sykes, B. D. (1990b) J. Mol;. Biol. 215, 411-428
Bodenhausen, G., Kogler, H. & Ernst, R. R. (1984) J. Magn. Resom. 58, 370-388
Evans, J. N. S. (1995) Biomolcular NMR Spectroscopy
Oxford University Press Inc., New York
Freifelder (1935) Physical Biochemistry
2nd, W. H. Freeman company, San Fransico.
Gallego, J., Ortiz, A. R. & Gago. F. (1993) J. Med. Chem. 36 , 1548 -1561
Gallego, J., Luque F. J., Orozco M., Burgos, C., Alvarez-Builla J.,
Rodrigo M. M., & Gago, F., (1994) J. Med. Chem.36, 1602-1609
Gilbert, D. E., van der Marel, G. A., van Boom, J. H. & Feigon, J. (1989) Proc. Natl. Acad. Sci. U.S.A. 86, 3006-3010
Gilbert, D. E., & Feigon, J.(1991) Biochemistry 30, 2483-2494
Gilbert, D. E., & Feigon, J.(1992) Nucl. Acids Res. 20, 2411-2420
Gao. X. & Patel, D. J. (1988) Biochemistry 27, 1744-1751
Gao. X. & Patel, D. J. (1988) Q. Rev. Biophys. 22, 93-138
Hare. D. R., Wemmer, D. E., Chou, S. H., Drobny, G & Reid, B. R. (1983) J. Mol. Biol. 171, 319-336
Low. C. M. L., Drew. H. R. & Waring, M. J. (1984) Nucl. Acids Res.
12, 4865-4879
Miller, P. S., Chandrasegaran. S., Dow, D. L., Pulford, S. M.& Kan,
L. S., (1982) Biochemistry 21, 5468-5474
Park J. Y. & Choi B. S. (1995) J. Biochem. 118, 989-995
Dickerson R. E. (1989) J. Mol. Biol. 205, 787-791
Sayers, E. W., & Waring, M. J. (1993) Biochemistry 32, 9094-9107
Ughetto, G., Wang, A. H.J., Quigley, G. J., van der Marel, G.A., van Boom, J. H. & Rich, A (1985) Nucl. Acids Res. 13, 2305-2323
Van Dyke, M. M. & Dervan, P. B. (1984) Science 225, 1122-1127
Waring, M.J. & Wakelin, L.P. G. (1974) Nature 252, 653-657
Waring, M.J. & Bailly, C. (1992) Nucl. Acids Res.20, 5601-5606
Waring, M.J. & Bailly, C. (1994) GENE 149, 69-79
Waring, M.J. & Bailly, C. (1995) Nucl. Acids Res.23, 885-892
Waring, M.J. & Bailly, C. (1999) Anti-Cancer Drug Design 14, 291-303
Wuthrich K. (1986) NMR of Proteins and Nucleic Acids
John Wiley & Sons. Inc., Switzerland.
Gao X. & Patel D. J. (1989) Quarterly Reviews of Biophysics 22, 93-138
Yu. C., Yang, T. H. & Young, J. J. (1991) Biochem. et Biophys. Acta.1075, 141-145