簡易檢索 / 詳目顯示

研究生: 張明娟
Chang minchuah
論文名稱: 利用電化學及螢光方法研究對稱雙苯-十六-冠-五-醚與金屬離子錯合
指導教授: 劉高家秀
Liu Gao, Jia-Xiu
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2001
畢業學年度: 89
語文別: 中文
論文頁數: 100
中文關鍵詞: 冠醚離子選擇性電極螢光熱力學常數
英文關鍵詞: crown ether, ion- selective electrode, fluorescence, thermodynamic parameter
論文種類: 學術論文
相關次數: 點閱:143下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文合成的一系列碳軸側臂對稱雙苯十六環冠醚中,以索套冠醚LCE-3b和索套冠醚 LCE-3e當作鉛離子和銀離子選擇電極薄膜電極的材料。由實驗結果顯示,以索套冠醚LCE-3b –PVC -NaTPB -NPOE和索套冠醚LCE-3e –PVC -NaTPB-NPOE的比例為5:50:1:100製成的薄膜電極,得到28.9和55.4mV/decade接近於能士特的理論值而感應的時間少於30秒,且電極有超過3個月以上的再現性。
    探討對金屬離子之錯合現象及形式,利用13C-NMR金屬誘導變化效應輔以1H-NMR光譜變化,可看出冠醚與金屬離子錯合時構形的改變情形,十六環碳軸冠醚與鈉離子及銀離子形成1:1錯合,錯合主要由冠醚主體決定。
    引入不同的發光團側臂可以快速地以螢光光譜在定性上測得金屬離子對冠醚螢光訊號強弱的影響:鈉離子使螢光強度增強,銀離子使螢光強度減弱,並可測知冠醚與金屬的錯合能力大小。
    使用鈉離子選擇性電極,來測量冠醚LCE(3a~3h)對Na+的熱力學常數,發現十六碳軸索套冠醚與鈉離子的錯合主要是由焓所控制和形成錯合的穩定性是由熵(△S)所控制。

    A series of sym-dibenzo-16-crown-5 ethers have been synthesized. Lariat crown ethers 3b and 3e were fabricated as the lead and the silver ion selective membrane electrodes, respectively. The best performance observed with the two membrane electrodes are composed with the following composition: (1) LCE-3b –PVC -NaTPB –NPOE and (2) LCE-3e –PVC -NaTPB-NPOE, at a ratio of 5:50:1:100. These two membrane electrodes show Nernstain response toward silver and lead with 55.4 and 28.9 mV per decade, respectively. The response time was less than 30 seconds and a good reproducibility over a period of 3 months was observed.
    13C and 1H NMR spectroscopies were used to investigate the formation of complexes between these lariat ethers with alkali metal cations. Results indicated that C-pivot sidearm lariat crown ethers form 1:1 complexes with Na+ and Ag+ ions. In addition, the oxygen atom on the top of the bridged carbon chain plays an important role in the complexing process.
    Crown ether-linked different fluorophores are well suited to the recognition of traces of metal ions. The addition of Na+ enhanced the fluorescence emission intensity while the addition of Ag+ quenched the fluorescence intensity. In addition, the complex ability was determined by the fluorescence spectral.
    The thermodynamic parameters constantsΔH and ΔS, of these lariat crown ethers (3a~3h) with sodium ion have been determined with a commercial sodium ion selective electrode. Results reveal that the complex formation of these lariat crown ether with sodium ion are mainly controlled by the enthalpy; which is further modified the entropy.

    第一章 緒論------------------------------------------------1 第二章 實驗部分--------------------------------------------5 2-1儀器設備--------------------------------------------------5 2-2藥品------------------------------------------------------7 2-3 合成步驟------------------------------------------------11 第三章 發展十六碳軸冠醚對鉛和銀的離子選擇性薄膜電極 3-1 研究動機------------------------------------------------23 3-2 實驗部分------------------------------------------------25 3-3 結果與討論----------------------------------------------27 3-4結論 ---------------------------------------------------38 第四章 以螢光光譜法研究冠狀醚與金屬離子錯合性質 4-1 研究動機------------------------------------------------39 4-2 實驗部分------------------------------------------------51 4-3 結果與討論----------------------------------------------53 4-4結論 ---------------------------------------------------90 第五章 十六碳軸索套冠狀醚之熱力學常數探討 5-1 研究動機------------------------------------------------91 5-2 實驗部分------------------------------------------------92 5-3 結果與討論----------------------------------------------93 5-4 結論 -------------------------------------------------100 參考文獻---------------------------------------------------

    1.Pederson, C. J. J. Am. Chem. Soc., 1967, 89, 7101.
    1(a). Weber, E.; Toner, J. L.; Laidler, C. A.; Stoddart, J. F.; Bartsch, R. A. Ed."Crown ether and analogs", Wiley & Sone, New, York, 1989.
    1(b). Pederson, C. J. J. Am. Chem. Soc. 1970, 92, 386.
    1(c). Frensdorff, H. K. J. Am. Chem. Soc. 1971, 93, 600.
    1(d). Izatt, R. M.; Eatough, D. J.; Christensen, J. J. Chem. Rev. 1974, 74, 351.
    2.Bartsh, R. A. Anal. Chem. 1996, 68, 2811-2817.
    3.Heo, G. S.; Bartsh, R. A. J. Am. Chem. Soc., 1981, 46, 3574.
    3a. 許文杰,國立台灣師範大學碩士論文, 1994.
    4. Craggs, A.; Moosy, G. J.; Thomas, J. D. R. J. Chem. Edu. 1974, 51, 541.
    5. Ohki, A.; Lu, J. P.; Bartsch, R. A. Anal. Chem.1994, 66, 651.
    6. Ohki, A.; Lu, J.P.; Bartsch, R. A. Anal. Chem. 1994, 66, 4432.
    7. Lilian, K. L.; Lin .C. S.; Youmg. D. S.; Shyu. W. J.; Ueng. C. H. J. Chem. Soc., Chem. Commun. 1996, 1225.
    8. Frensdorff. H. K., J. Am. Chem. Soc., 1971 , 10, 600.
    9. Jurgen .G.; Hermann .S .; Jadwiga . S. Inorg. Chem., 1978, 12, 3326.
    10. Truong . N. V.; Norris. A. R.; Shin H. S. ; Buncel . E. Inorg. Chim. Acta ; 1991,184, 59.
    11. Buschman. H. J., Inorg. Chim. Acta., 1992, 195, 51.
    12. Sakai.T. S.; Tsubomura, K. T; Supramolecular Chem. 1996 , 7 , 157.
    13. Weber . E. ; Patai. S.; Rapport. Z.〝Crown Ether and Analogs〞, John
    Wiley and Sons, New York (1989) pp.305-358.
    14. Gokel. G. W.; Chem. Soc. Rev., 1992, 21, 39 .
    15. Mastumoto. K.; M., Hashuimoto. M.; Tsukube. H. J. Chem. Soc. Perkin Trans. 1995 , 1, 2497.
    16. Eisenman. G. Glass electrode for hydrogen and other cations, Principles and Practice, M. Dekker, Inc., New York, 1967.
    17. Rechnitz. G. A, IUPAC, Cardiff ed.,pp.457-471, 1974.
    18. Bailey. P. L. Analysis with Ion-selective Electrode, pp.159-161, 1979.
    19. Schmidt. E.; Pungor. E. Anal. Lett., 1971, 4(10), 641
    20. De Silva, A. P.; Nimal Gunarayne, H. Q.; Gunnlaugsson, T.; Huxley, A. J. M.; McCoy, C. P.; Rademacher, J. T.; Rice, T. E. Chem. Rev.1997, 97, 1515.
    20(a) Skoog, D. A.; Leary, J. J. Principle of instrumental analysis, pp. 174-193.
    21. Rehm, D.; Weller, A. Isr. J. Chem. 1970, 8, 259.
    22. Bryan, A. J.; De Silva, A. P.; De Silva, S. A.; Rupasinghe, R. A. D. D.; Sandanayake, K. R. A. S. Biosensors. 1989, 4, 169
    23. Bissell, R. A.; De Silva, A. P.; Gunaratne, H. Q. N.; Lynch, P. L. M.; Maguire, G. E. M.; Sandanayake, K. R. A. S. Chem. Soc. Rev. 1992, 21, 187.
    24. Bissell, R. A.; De Silva, A. P.; Gunaratne, H. Q. N.; Lynch, P. L. M.; Maguire, G. E. M.; Sandanayake, K. R. A. S. Top. Curr. Chem. 1993, 168, 223.
    25. Winnik, F. M. Chem. Rev. 1993, 93, 587.
    26. Kakizawa, Y.; Akita, T.; Nakamura, H. Chem.Lett.1993,1671
    27. Aoki, I.; Sakaki, T.; Tsutsui, S. Tetrahedron Lett. 1992, 33, 89.
    28. Ueno, A.; Moriwaki, F.; Osa, T.; Hamada, F.; Murai, K. Bull. Chem. Soc. Jan. 1986, 59, 465.
    29. Montalti, M.; Prodi, L. and Zaccheroni, N. J. Fluorescence. 2000. 10. 71-76.
    29(a) Fabbrizzi, L.; Poggi, A. Chemical Society Reviews. 1995. 197-202.
    30. Bourson, J; Pouget, J; Valeur, B. J. Phys. Chem. 1993, 97, 4551-4557.
    31. Barltrop, J. A; Coyle, J. D. Principles of photochemistry, 1975, 110 31(a) Fraiji, L. K.; Hayes, D. M. and Werner, T. C. J. Chem. Educ. 1992, 69, 424-427.
    32. Goodpaster, J. V.; McGuffin, V. L. Anal. Chem. 2000, 72(5), 1072-1077
    33. Goodpaster , J. V.; McGuffin, V. L. Analytical Chemistry; 2000; 72(5); 1072-1077.
    34. Gandour, R. D.; Fronczek, F. R.; Gatto, V. J.; Minganti, C.; Schultz, R. A,; Gokel, G. W. J. Am. Chem. Soc. 1987, 108, 4078.
    35. Izatt, R. M.; Bradshaw, J. S.; Nielson, S. A.; Lamb, J. D.; Christensen, J. J. Chem. Rev. 1985, 85, 271.
    36. Arnold, K. A.; Echegoyen, L.; Gokel, G. W. J. Am. Chem. Soc. 1987, 109, 3713-3715.
    37. Gutknecht, J.; Schneider, H.; Stroka , J. Inorg. Chem. 1978, 17 , 3326.
    38. Liu, Y.; Inoue, Y.; Ouchi, M. J. Org. Chem, 1998, 68, 2144-2147.

    無法下載圖示
    QR CODE