簡易檢索 / 詳目顯示

研究生: 張丞勛
Chang, Cheng-Hsun-Tony
論文名稱: 鈷奈米結構的磁性研究
Magnetic properties of cobalt in nanostructured materials
指導教授: 蔡志申
Tsay, Jyh-Shen
學位類別: 博士
Doctor
系所名稱: 物理學系
Department of Physics
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 120
中文關鍵詞: 磁性表面磁光柯爾效應超高真空薄膜
英文關鍵詞: magnetic, cobalt, surface magneto-optic Kerr effect, ultrahigh vacuum, film
DOI URL: https://doi.org/10.6345/NTNU202203627
論文種類: 學術論文
相關次數: 點閱:82下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • n/a

    Surface Science influences a wide range for the fundamental researches of chemistry and physics occurring at surfaces and interfaces. Especially for ultrathin films, the effective magnetic anisotropy can be affected by the surface and interfacial conditions because of the large surface-to-volume ratio. On the other hand, because of the potential uses of low-cost and flexible-substrate-based electronics, semiconducting organic materials have attracted much attention. According to the key points of these issues mentioned above, a hybrid interface such as antiferromagnetic/ferromagnetic, organic/ferromagnetic, and electrolyte/ferromagnetic can be more attentive. In this dissertation, five topics are collected in hybrid interfaces under different environments. Although the research topics are studied in different environments such as ultrahigh vacuum, ex-situ measurement, and solution process. The surface science technique is the basic tool in this dissertation. At first, influences of antiferromagnetic grains on exchange bias phenomena in CoO/Co bilayers on a semiconductor surface were investigated. The results provide the insights into our knowledge related to controlling the temperature dependence of exchange bias and related mechanisms. Second, interaction transfer of silicon atoms forming Co silicide for Co/root 3 x root 3 R30 degree-Ag/Si(111) and related magnetic properties provides a possible way of growing flat magnetic layers on silicon substrate with controllable silicide formation. Third, the magnetic properties for single crystal rubrene/Co multilayers is investigated. The rubrene/Co multilayers show unusual magnetization and exchange bias phenomenon in low temperature. Fourth, the electric field modifications on the coercive force for electrochemical etched Co/Pt(111) films are investigated. Variations of the coercive force between 0.31 and 0.38 kOe are reproducible for electrochemical etched Co/Pt(111) under conditions of repeatedly electric potential at -500 and -400 mV. At last, reversible control of coercive force for Co/Pt(111) by varying the electric potential and the related mechanism are investigated. The mechanism is proposed that electric potential tuning the coercive force is related to the thickness of the ferromagnetic layer because of the magnetic anisotropy energy changes. Moreover, the variation of coercive force with higher efficiency for smaller thickness of ferromagnetic layer is observed. All of these topics can improve the applications of magnetic recording media and spintronic devices.

    Contents Acknowledge I Abstract II List of acronyms and abbreviations IV Contents VI Chapter 1. Introduction 1 1.1 Surface science 3 1.2 Magnetism 5 1.3 Organic molecules 7 Chapter 2. Experimental 9 2.1 Ultrahigh vacuum system 9 (a). Auger electron spectroscopy 10 (b). Low-energy electron diffraction and reflection high energy electron diffraction 12 (c). Surface magneto-optic Kerr effect 15 (d). Scanning tunneling microscopy 16 2.2 Ex-situ measurement system 17 (a). Sputtering chamber 17 (b). Atomic-force microscopy 18 (c). Superconducting quantum interference device 19 2.3 Solution process system 21 Chapter 3. Magnetics 23 3.1 Hysteresis loop 23 (a). Magnetization 24 (b). Coercive force 24 3.2 Magnetic anisotropy (in general) 25 (a). Magnetocrystalline anisotropy (spin-orbit anisotropy) 25 (b). Magnetic shape anisotropy (dipolar anisotropy) 25 3.3 Advanced magnetic anisotropy 26 (a). Exchange bias 26 (b). Electric potential induced 29 CHAPTER 4. Influences of antiferromagnetic grains on exchange bias fields and mechanisms for CoO/Co bilayers. 31 CHAPTER 5. Interaction transfer of silicon atoms forming Co silicide for Co/√3×√3R 30°-Ag/Si(111) and related magnetic properties. 45 Chapter 6. Magnetic properties of rubrene/Co multilayers. 58 Chapter 7. Electric field modifications on the coercive force for electrochemical etched Co/Pt(111) films. 72 Chapter 8. Tunable coercive force by electric potential in solution process and the related mechanism. 85 Chapter 9. Conclusion and further studies 102 Reference 103 Publication list 114

    Reference
    [1] C.S. Shern et al., Surf. Sci. 429 (1999) L497.
    [2] V.F. Puntes et al., Nature Materials 3 (2004) 263.
    [3] W. P. Pratt et al., Phys. Rev. Lett. 66 (1991) 3060.
    [4] B. Zhang et al., J. Magn. Magn. Mater. 299 (2006) 205.
    [5] C.H.T. Chang, S.C. Chang, J.S. Tsay, and Y.D. Yao, AIP Advances 6 (2016) 056101.
    [6] S.C. Chang, J.S. Tsay, C.H.T. Chang, and Y.D. Yao, Appl. Surf. Sci. 354 (2015) 95.
    [7] J.S. Tsay, P.C. Chuang, C.H.T. Chang, and Y.D. Yao, IEEE Trans. Magn. 50 (2014) 3300104.
    [8] M. Gaminoa et al, J. Magn. Magn. Mater. 320 (2008) e308.
    [9] O. Vilkov et al., Sci. Rep. 3 (2013) 2168.
    [10] J.S. Tsay, D.C. Tsai, C.H.T. Chang, W.H. Chen, Thin Solid Films 548 (2013) 475.
    [11] C.A.F. Vaz et al., J. Magn. Magn. Mater. 1618 (2001) 226.
    [12] Y.J. Hou et al., Appl. Surf. Sci. 354 (2015) 139.
    [13] C.Y. Hsu et al., J. Alloy Compd. 576 (2013) 393.
    [14] J.E. Anthony, Nat. Mater. 13 (2014) 773.
    [15] T.J. Ha, D. Akinwande, and A. Dodabalapur, Appl. Phys. Lett. 101 (2012) 033309.
    [16] N. Beaumont et al., J. Phys. Chem. C 118 (2014) 14813.
    [17] F. Macia et al., Nat. Commun. 5 (2014) 3609.
    [18] R. Dhanker, N. Chopra, and N.C. Giebink, Adv. Funct. Mater. 24 (2014) 4775.
    [19] J. Idigoras et al., J. Phys. Chem. C 118 (2014) 3878.
    [20] B. Ehrler et al., Appl. Phys. Lett. 101 (2012) 153507.
    [21] About the journal “surface science”, Elsevier B.V., 2016,
    (http://www.journals.elsevier.com/surface-science-including-surface-science-letters/).
    [22] M.A. Boles, D. Ling, T. Hyeon, and D.V. Talapin, Nat. Mater. 15 (2016) 141.
    [23] K. R. Jeon et al., Nature Mater. 13 (2014) 360.
    [24] I.N. Lund et al., J. Power Sources 246 (2014) 117.
    [25] M. Weisheit et al., Science 315 (2007) 349.
    [26] J.S. Tsay and Y. D. Yao, Appl. Phys. Lett. 74 (1999) 1311.
    [27] A. Fert, Thin Solid Films 517 (2008) 2.
    [28] W.Y. Chan et al., J. Korean Phys. Soc. 62 (2013) 1945.
    [29] C.S. Shern et al., Surf. Sci. Lett. 429 (1999) L497.
    [30] M.T. Johnson et al., Rep. Prog. Phys. 59 (1996) 1409.
    [31] W.C. Lin et al., Appl. Phys. Lett. 17 (2011) 172502.
    [32] G. Bian et al., Phys. Rev. Lett. 108 (2012) 186403.
    [33] Y.J. Chen, C.C. Chang, H.Y. Ho, and J.S. Tsay, Thin Solid Films 519 (2011) 8343.
    [34] K.R. Elder et al., Phys. Rev. Lett. 108 (2012) 226102.
    [35] A. Meyer et al., Phys. Rev. B 82 (2010) 085424.
    [36] D.C. Fu, P.P. Huang, and U. Bach, Electrochimica Acta 77 (2012) 121.
    [37] R.F. Zhang et al., ACTA Mater. 60 (2012) 2855.
    [38] W.H. Chen et al., IEEE Trans. Magn. 50 (2014) 2000304.
    [39] G. Ertl, J. Küppers, Low Energy Electrons and Surface Chemistry, second ed., VCH, Weinheim, 1985.
    [40] T. Miyazaki and H. Jin, The Physics of Ferromagnetism, springer, Berlin, 2012.
    [41] Y. Jun, J. Choia, and J. Cheon, Chem. Commun. 2007 (2006) 1203.
    [42] I. Yamamoto et al., Phys. Rev. B 81 (2010) 214442.
    [43] Y. Fan et al., Nat. Nanotechnol. 8 (2013) 438.
    [44] P.K. Manna and S.M. Yusuf, Phys. Rep. 535 (2014) 61.
    [45] M.Y. Khan, C.B. Wu, and W. Kuch, Phys. Rev. B 89 (2014) 094427.
    [46] W.H. Meiklejohn and C.P. Bean, Phys. Rev. 105 (1957) 904.
    [47] H. Ohldag et al., Phys. Rev. Lett. 91 (2003) 017203.
    [48] A.L. Rizzini et al., Nano Lett.12 (2012) 5703.
    [49] R. Bali et al., Appl. Phys. Lett. 100 (2012)132403.
    [50] J.C. Read et al., APL Mater. 2 (2014) 046109.
    [51] O.V. Billoni, F.A. Tamarit, and S.A. Cannas, Phys. Rev. B 88 (2013) 020405.
    [52] Y.J. Jia et al., Chin. J. Chem. 32 (2014) 513.
    [53] A. Dualeh et al., Appl. Phys. Lett. 100 (2012) 173512.
    [54] K. Myny et al., IEEE J. Solid State Circ. 47 (2012) 284.
    [55] V.A. Dediu, L.E. Hueso, I. Bergenti, and C. Taliani, Nat. Mater. 8 (2009) 707.
    [56] V. Podzorov, MRS Bull. 38 (2013) 15.
    [57] I. Biaggio and P. Irkhin, Appl. Phys. Lett. 103 (2013) 263301.
    [58] B. Verreet et al., Adv. Mater. 25 (2013) 5504.
    [59] H. Sirringhaus, Adv. Mater. 26 (2014) 1319.
    [60] D.L. Sun et al., Nat. Commun. 5 (2014) 4396.
    [61] S. Watanabe et al., Nat. Phys. 10 (2014) 308.
    [62] Y.L. Chan et al., Phys. Rev. Lett. 104 (2010) 177204.
    [63] C.H.T. Chang, T.Y. Fu, and J.S. Tsay, J. Appl. Phys. 117 (2015) 17B733.
    [64] T. Mangen, H.S. Bai, and J.S. Tsay, J. Magn. Magn. Mater. 322 (2010) 1863.
    [65] J. Kerr, Philos. Mag. 3 (1877) 339.
    [66] J. Kerr, Philos. Mag. 5 (1878) 161.
    [67] E.R. Moog and S.D. Bader, Superlattices Microstruct. 1 (1985) 543.
    [68] S.D. Bader, E.R. Moog, and P. Grünberg, J. Magn. Magn. Mater. 53 (1986) L295.
    [69] Z.Q. Qiu and S.D. Bader, Rev. Sci. Instrum. 71 (2000) 1243.
    [70] P.A. Tipler and R.A. Llewellyn, Modern Physics, 6ed, Freeman, New York, 2012.
    [71] P.Y. Yen et al., J. Phys. Chem. C 115 (2011) 23802.
    [72] C.H. Lin et al., Thin Solid Films 519 (2011) 8379.
    [73] M. McElfresh, Featuring Quantum Design’s Magnetic Property Measurement System, Quantum Design, 1994.
    [74] C.L. Lin et al., Phys. Chem. Chem. Phys. 15 (2013) 2360.
    [75] D.T. Pham et al., J. Phys. Chem. C 111 (2007) 16428.
    [76] S.L. Tsay et al., Phys. Chem. Chem. Phys. 12 (2010) 14950.
    [77] R.C. O’Handley, Modern Magnetic Materials: Principles and Applications, Wiley, New York, 1999.
    [78] D. Jiles, Introduction to Magnetism and Magnetic Materials. London, U.K., Chapman and Hall, 1994.
    [79] J. C. Slonczewski, IEEE Trans. Magn. 45 (2009) 8.
    [80] N. Honda and K. Ouchi, J. Magn. Magn. Mater. 235 (2001) 289.
    [81] J. Nogués et al., Phys. Rep. 422 (2005) 65.
    [82] S. Ouazi et al., Nature Commun. 3 (2012) 1313.
    [83] F. Matsukura, Y. Tokura, and H. Ohno, Nature Nanotechnol. 10 (2015) 209.
    [84] J. Nogués and I.K. Schuller, J. Magn. Magn. Mater. 192 (1999) 203.
    [85] E. Młyńczak et al., Appl. Surf. Sci. 304 (2014) 86.
    [86] A.D. Lamirand et al., Phys. Rev. B 88 (2013) 140401(R).
    [87] K. O’Grady et al., J. Magn. Magn. Mater. 322 (2010) 883.
    [88] H.D. Gan et al., Appl. Phys. Lett. 105 (2014) 192403.
    [89] G. Gubbiotti et al., J. Appl. Phys. 117 (2015) 17D150.
    [90] K. Akmaldinov et al., J. Appl. Phys. 115 (2014) 17B718.
    [91] A. Kohn et al., Sci. Rep. 3 (2013) 2412.
    [92] D.L. Cortie et al., Appl. Phys. Lett. 105 (2014) 032402.
    [93] E. Młyńczak et al., Phys. Rev. B 88 (2013) 085442.
    [94] T. Saerbeck et al., J. Appl. Phys. 114 (2013) 013901.
    [95] K.Y. Kim et al., J. Appl. Phys. 114 (2013) 073908.
    [96] J.H. Hsu, A.C. Sun, and P. Sharma, Thin Solid Films 542 (2013) 87.
    [97] C.J. Chen, R.K. Chiang, S. Kamali, and S.L. Wang, Nanoscale 7 (2015) 14332.
    [98] I.L. Prejbeanu et al., J. Phys. D: Appl. Phys. 46 (2013) 074002.
    [99] I.L. Prejbeanu et al., J. Phys. Conden. Matter 19 (2007) 165218.
    [100] G. Vinai et al., Appl. Phys. Lett. 104 (2014) 162401.
    [101] J.A.D. Toro et al., Phys. Rev. Lett. 115 (2015) 057201.
    [102] M. Cormier et al., Phys. Rev. B 90 (2014) 174418.
    [103] L. Gerhard et al., Appl. Phys. Lett. 105 (2014) 152903.
    [104] H. Meng et al., Appl. Phys. Lett. 105 (2014) 042410.
    [105] U. Bauer et al., Nature Mater. 14 (2015) 174.
    [106] D. Chiba et al., Science 301 (2003) 943.
    [107] D. Chiba and T. Ono, J. Phys. D: Appl. Phys. 46 (2013) 213001.
    [108] A. Obinata et al., Sci. Rep. 5 (2015) 14303.
    [109] K. Shimamura et al., Appl. Phys. Lett. 100 (2012) 122402.
    [110] C.H.T. Chang, W.H. Kuo, and J.S. Tsay, Surf. Coating Technol. (2016), doi: 10.1016/j.surfcoat. 2016.03.037.
    [111] S. Suzuki et al., J. Phys. Soc. Jpn. 84 (2015) 014709.
    [112] Z. Bai et al., New J. Phys. 16 (2014) 103033.
    [113] D. Yoshikawa et al., Appl. Phys. Express 7 (2014) 113005.
    [114] T. Maruyama et al., Nature Nanotech. 4 (2009) 158.
    [115] J.S. Tsay et al., Appl. Phys. Lett. 88 (2006) 102506.
    [116] H.W. Chang et al., J. Magn. Magn. Mater. 310 (2007) E741.
    [117] H.W. Chang et al., J. Appl. Phys. 99 (2006) 08J705.
    [118] H.W. Chang et al., J. Alloys Comp. 562 (2013) 69.
    [119] M. Gruyters and D. Riegel, J. Appl. Phys. 88 (2000) 6610.
    [120] T. Matsuyama and A. Ignatiev, Surf. Sci. 102 (1981) 18.
    [121] J.C. Vickerman, Surface Analysis – the Principal Techniques, John Wiley & Sons, Chichester, 1997.
    [122] W.M. Haynes, CRC Handbook of Chemistry and Physics, 96th Ed., CRC Press, 2015.
    [123] M.P. Seah, Surf. Interface Anal. 44 (2012) 1353.
    [124] A. Jablonski and C.J. Powell, J. Electron Spec. Rel. Phenom. 199 (2015) 27.
    [125] J.A.C. Bland and B. Heinrich, Ultrathin Magnetic Structures I, Springer, Berlin, 1994.
    [126] N.N. Berchenko et al., Surf. Interface Anal. 40 (2008) 641.
    [127] Z.G. Pinsker, Electron Diffraction, Butterworths Scientific Publications, London, 1953.
    [128] J.M. Raitano et al., J. Alloys Comp. 644 (2015) 996.
    [129] A.E. Berkowitz and K. Takano, J. Magn. Magn. Mater. 200 (1999) 552.
    [130] G. Vallejo-Fernandez et al., Appl. Phys. Lett. 91 (2007) 212503.
    [131] K. Takano, R.H. Kodama, and A.E. Berkowitz, Phys. Rev. Lett. 79 (1997) 1130.
    [132] K.R. Jeon et al., Nature Mater. 13 (2014) 360.
    [133] T. Taniyama et al., NPG Asia Mater. 3 (2011) 65.
    [134] S. Kang et al., IEEE Trans. Nanotechnol. 11 (2012) 437.
    [135] M.A.K. Zilani et al., J. Phys. Condens. Matter 18 (2006) 6987.
    [136] H. Busse et al., Surf. Sci. 381 (1997) 133.
    [137] C. Cassidy et al., Appl. Phys. Lett. 104 (2014) 161903.
    [138] A.N. Hattori et al., J. Magn. Magn. Mater. 363 (2014) 158.
    [139] M. Molina-Ruiz et al., Appl. Phys. Lett. 102 (2013) 143111.
    [140] J.S. Tsay, Y.D. Yao, and Y. Liou, Surf. Sci. 454 (2000) 856.
    [141] X.Y. Liu, Z.Q. Zou, L.M. Sun, and X. Li, Appl. Phys. Lett. 103 (2013) 043116.
    [142] C.W. Hu et al., IEEE Trans. Nanatechnol. 10 (2011) 1031.
    [143] C.M. Lu, H.F. Hsu, and K.C. Lu, Nanoscale Res. Lett. 8 (2013) 308.
    [144] J.S. Tsay et al., J. Korean Phys. Soc. 62 (2013) 1792.
    [145] J. Alvarez et al., Phys. Rev. B 47 (1993) 16048.
    [146]S.L. Tsay et al., Surf. Interface Anal. 40 (2008) 1641.
    [147] D.J. Spence and S.P. Tear, Surf. Sci. 398 (1998) 91.
    [148] A. Tomaszewska et al., Thin Solid Films, 520 (2012) 6551.
    [149] G. Rossi et al., Phys. Rev. Lett. 62 (1989) 191.
    [150] S. Tanuma, C.J. Powell, D.R. Penn, Surf. Interface Anal. 43 (2011) 689.
    [151] D.R. Lide, CRC Handbook of Chemistry and Physics, CRC Press, New York, 2003.
    [152] S. Hassam et al., Ber. Bunsenges. Phys. Chem. 87 (1983) 785.
    [153] T. Veres, M. Cai, R. W. Cochrane, and S. Roorda, J. Appl. Phys. 87 (2000) 8504.
    [154] H. von Känel, Mater. Sci. Rep. 8 (1992) 193.
    [155] O. El-Atwani et al., Appl. Phys. Lett. 101 (2012) 263104.
    [156] I. Altfeder, W. Yi, and V. Narayanamurti, Phys. Rev. B 87 (2013) 020403.
    [157] M.J. Zuckermann, Solid State Commun. 12 (1973) 745.
    [158] Y.Q. Zhang et al., Appl. Phys. Lett. 107 (2015) 082404.
    [159] X. Liang et al., ACS Appl. Mater. Interfaces 8 (2016) 8175.
    [160] L.J. Cornelissen et al., Nat. Phys. 11 (2015) 1022.
    [161] J.A. de Toro et al., Phys. Rev. Lett. 115 (2015) 057201.
    [162] I. Vobornik et al., Nano Lett. 11 (2011) 4079.
    [163] P. Bhatt et al., Chem. Phys. Lett. 651 (2016) 155.
    [164] D.O. Kim et al., Sci. Rep. 6 (2016) 25391.
    [165] H.X. Yang et al., Phys. Rev. Lett. 110 (2013) 046603.
    [166] D. Liu, Y. Hu, H. Guo, and X.F. Han, Phys. Rev. B 78 (2008) 193307.
    [167] M.M. Schwickert et al., Phys. Rev. B 57 (1998) 13681.
    [168] D. Altbir et al., Phys. Rev. B 40 (1989) 6963.
    [169] M.Y. Lee et al., Adv. Funct. Mater. 26 (2016) 1445.
    [170] P.H. Chu et al., Adv. Electron. Mater. 2 (2016), doi: 10.1002/aelm.201670010.
    [171] K. Liu et al., J. Mater. Chem. A 4 (2016) 1044.
    [172] H. Zhou, H.G. Cheong, and J.W. Park, J. Nanosci. Nanotechnol. 16 (2016) 5179.
    [173] K.W. Seo et al., Sol. Energy Mater. Sol. Cells 155 (2016) 51.
    [174] T. Hasegawa, J. Takeya, Sci.Technol. Adv. Mater. 10 (2009) 024314.
    [175] W. Jia et al., J. Phys. Chem. C 120 (2016) 8380.
    [176] S. Ono, K. Miwa, and S. Seki, Appl. Phys. Lett. 108 (2016) 063301.
    [177] Y. Chen, H.T. Yi, and V. Podzorov, Phys. Rev. Appl. 5 (2016) 034008.
    [178] F. Jin et al., Sci. Rep. 6 (2016) 26262.
    [179] J.S. Tsay, Y.D. Yao, and C.S. Shern, Phys. Rev. B 58 (1998) 3609.
    [180] M. James et al., Nucl. Instrum. Methods Phys. Res., Sect. A 632 (2011) 112.
    [181] T. Saerbeck et al., Rev. Sci. Instrum. 83 (2012) 081301.
    [182] A. Nelson, J. Appl. Cryst. 39 (2006) 273.
    [183] B.D. Chapman et al., J. Cryst. Growth 290 (2006) 479.
    [184] M. Jourdan et al., Nat. Commun. 5 (2014) 3974.
    [185] C. Detavernier et al., J. Appl. Phys. 88 (2000) 133.
    [186] C. Andersson et al., Phys. Rev. Lett. 99 (2007) 177207.
    [187] W.C. Lin et al., Appl. Phys. Lett. 88 (2006) 153117.
    [188] L. Wang, T. Maxisch, and G. Ceder, Phys. Rev. B 73 (2006) 195107.
    [189] E.L. Salabaş et al., Nano Lett. 6 (2006) 2977.
    [190] S.C. Petitto et al., J. Mol. Catal. A-Chem. 281 (2008) 49.
    [191] M.C. Biesinger et al., Appl. Surf. Sci. 257 (2011) 2717.
    [192] G.A. Carson et al., J. Vac. Sci. Technol. A 14 (1996) 1637.
    [193] XPS Knowledge Base, Thermal Fisher Scientific Inc., 2016,
    (http://xpssimplified.com/elem- ents/carbon.php).
    [194] W. Schindler, J. Kirschner, Phys. Rev. B 55 (1997) R1989.
    [195] B.B. Straumal et al., Phys. Rev. B 79 (2009) 205206.
    [196] M. Almasi-Kashi et al., Mater. Chem. Phys. 144 (2014) 230.
    [197] C. Liu, E.R. Moog, and S.D. Bader, Phys. Rev. Lett. 60 (1988) 2422.
    [198] G. Binasch et al., Phys. Rev. B 39 (1989) 4828.
    [199] “The Nobel Prize in Physics 2007 - Advanced Information". Nobelprize.org. Nobel Media AB, 2014, Web 2016.
    [200] D.M. Edwards et al., J. Phys,: Condens. Matter 3 (1991) 494.
    [201] C. Clavero et al., Phys. Rev. B 80 (2009) 024418.
    [202] L. Smardz, U. Köbler, and W. Zinn, J. Appl. Phys. 71 (1992) 5199.
    [203] T. Chatterji, Neutron Scattering from Magnetic Materials, Elsevier B. V., Amsterdam, 2006.
    [204] S.J. Park et al., Sci. Rep. 5 (2015) 13866.
    [205] J. Huang et al., Sci. Rep. 5 (2015) 15889.
    [206] J.J. Richardson, M. Björnmalm, and F. Caruso, Science 348 (2015) 411.
    [207] A.B. Tesler et al., Nature Commun. 6 (2015) 8649.
    [208] J.A. Switzer, Science 338 (2012) 1300.
    [209] P. Nagpal, N.C. Lindquist, S.H. Oh, and D.J. Norris, Science 325 (2009) 594.
    [210] S.M. Kim et al., Nature Commun. 6 (2015) 8662.
    [211] D.L. Feldheim, Science 316 (2007) 699.
    [212] J. Clavilier et al., J. Electroanal. Chem. 205 (1986) 267.
    [213] S. Tanaka, S.L. Yau, and K. Itaya, J. Electroanal. Chem. 396 (1995) 125.
    [214] P. Allongue et al., Surf. Sci. 557 (2004) 41.
    [215] Y.C. Kuo et al., Electrochimica Acta 112 (2013) 831.
    [216] N. Toyoda, A. Fujimoto, and I. Yamada, J. Appl. Phys. 113 (2013) 17A328.
    [217] P.C. Jiang et al., J. Appl. Phys. 117 (2015) 17B742.
    [218] R.F. Willis, Prog. Surf. Sci. 54 (1997) 277.
    [219] M.Á. Niño et al., J. Phys.: Condens. Matter 20 (2008) 265008.
    [220] C. Chappert and P. Bruno, J. Appl. Phys. 64 (1988) 5736.
    [221] S. Kanai et al., Appl. Phys. Lett. 105 (2014) 242409.
    [222] G. Scheunert et al., Appl. Phys. Rev. 3 (2016) 011301.
    [223] T. Coughlin, HDD Annual Unit Shipments Increase, Forbes, 2014, Web 2015, (http://www.forbes.com/sites/tomcoughlin/2015/01/29/hdd-annual-unit-shipments-increase-in-2014/).
    [224] Y. Shiroishi et al., IEEE Trans. Magn. 45 (2009) 3816.
    [225] E. Auerbach et al., IEEE Trans. Magn. 52 (2016) 3000804.
    [226] Y. Wang et al., IEEE Trans. Magn. 51 (2015) 3000507.
    [227] J. Shi et al., Nano Lett. 15 (2015) 1217.
    [228] N. Dwivedi et al., Sci. Rep. 5 (2015) 7772.
    [229] W.A. Challener et al., Nat. Photonics 3 (2009) 220.
    [230] M.H. Kryder et al., Proc. IEEE 96 (2008) 1810.
    [231] S. Okamoto et al., J. Phys. D: Appl. Phys. 48 (2015) 353001.
    [232] J.G. Zhu et al., IEEE Trans. Magn. 44 (2008) 125.
    [233] C. Velez et al., ACS nano 9 (2015) 10165.
    [234] X. Xue et al., ACS Appl. Mater. Interfaces 7 (2015) 22515.
    [235] J. Henderson et al., Nanotechnology 23 (2012) 185304.
    [236] T.R. Albrecht et al., IEEE Trans. Magn. 51 (2015) 0800342.
    [237] T.M. Liu et al., Nano Lett. 15 (2015) 6862.
    [238] W.S. Lin et al., J. Phys. Chem. C 119 (2015) 20673.
    [239] S. Ohkoshi et al., Nature Chem. 3 (2011) 564.
    [240] A.J. Bard and L.R. Faulkner, ELECTROCHEMICAL METHODS: Fundamen-tals and Applications, Wiley, New York, 2001.
    [241] J.D. Jackson, Classical Electrodynamics, 3rd ed, Wiley, New York, 1998.
    [242] N. Yamamoto et al., Mater. Res. Express 3 (2016) 025004.
    [243] W. Schindler and J. Kirschner, Phys. Rev. B 55 (1997) R1989.
    [244] B. Straumal et al., Phys. Rev. B 79 (2009) 205206.
    [245] M. Almasi-Kashi et al., Mater. Chem. Phys. 144 (2014) 230.
    [246] C. Liu et al., Phys. Rev. Lett. 60 (1988) 2422.
    [247] M.Á. Niño et al., J. Phys.: Condens. Matter 20 (2008) 265008.
    [248] T. Tsuchiya et al., ACS Nano 10 (2016) 1655.
    [249] W. Zhou et al., ACS Appl. Mater. Interfaces 8 (2016) 5424.
    [250] C.H. Chen et al., J. Phys. Chem. C 120 (2016) 5783.
    [251] J. Tang et al., Nano Lett. 16 (2016) 3109.

    無法下載圖示 本全文未授權公開
    QR CODE