簡易檢索 / 詳目顯示

研究生: 陳必豪
Chen, Bi-Hao
論文名稱: 運用Go-Lab不同的探究教學方式對學習成效與認知負荷之影響:以遺傳學中心法則的概念為例
The Relationship among Different Inquiry Teaching, Learning Effect and Cognitive Load
指導教授: 張俊彥
Chang, Chun-Yen
口試委員: 劉湘瑤
Liu, Shiang-Yao
吳穎沺
Wu,Yingtian
口試日期: 2021/06/08
學位類別: 碩士
Master
系所名稱: 科學教育研究所
Graduate Institute of Science Education
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 76
中文關鍵詞: 電腦模擬探究教學認知負荷
英文關鍵詞: Go-Lab, computer simulation, inquiry learning, cognitive load
研究方法: 準實驗設計法
DOI URL: http://doi.org/10.6345/NTNU202100816
論文種類: 學術論文
相關次數: 點閱:287下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以建構主義取向觀點切入,探討以電腦模擬結合探究式學習的教學情境中,主動處理對學習成效與認知負荷感受之影響。綜觀過去研究,電腦模擬與探究式學習都是奠定於學習者主動處理的前提之上,而主動處理的過程能給予學習者更多的主控權,進而引發學習者更深層的認知思考過程。然而,主動處理的過程可能在各種嘗試的探索當中產生較高的認知負荷,未必有利於學習。因此,不同的教學設計應納入學習者先備知識程度來進行考量。本研究以生物學遺傳中心法則概念為例,結合電腦模擬與探究式學習情境(Go-Lab),探討學習者是否主動操作電腦模擬(模擬組、影片組)對學習成效與認知負荷感受之影響,並進一步探討此影響是否因學習者先備知識程度而具有調節效果。本研究採準實驗研究法,以108學年度就讀桃園市的高中一年級學生為研究對象,並自編「學習成效測驗」與「認知負荷量表」為研究工具,共回收108份有效問卷。將資料以描述性統計、雙因子變異數分析與共變數分析進行統計分析。本研究結果摘要如下:
    一、 在電腦模擬結合探究式學習的教學情境中,「影片組」與「模擬組」在學習內容學習成效上,沒有顯著差異。且與學習者先備知識程度無顯著交互作用(無調節效果)。
    二、 在電腦模擬結合探究式學習的教學情境中,「影片組」與「模擬組」在過程技能的學習成效上有顯著差異,且模擬組優於影片組。但是,此影響與學習者先備知識程度無顯著交互作用(無調節效果)。
    三、 在電腦模擬結合探究式學習的教學情境中,「影片組」與「模擬組」在實作學習階段之認知負荷感受有顯著差異,且影片組高於模擬組。但是,此差異與學習者先備知識程度無顯著交互作用(無調節效果)。
    四、 在電腦模擬結合探究式學習的教學情境中,「影片組」與「模擬組」在整體課程之認知負荷感受沒有顯著差異;且與學習者先備知識程度無顯著交互作用(無調節效果)。

    The study investigated the moderating effect of prior knowledge on the relationship of simulation-based inquiry learning, learning effect and cognitive load. The study included 108 students attending senior high school in Taoyuan City in 2020. 55 students participated in animation-based inquiry learning, and 53 were assigned to receive simulation-based inquiry learning. The effectiveness of the instruction was evaluated by the Central Dogma Concept Test and a self-rating the Central Dogma Cognitive Load Questionnaire. The resulting data were analyzed with descriptive statistics, two-way ANOVA and ANCOVA.
    The results of current study are as follows:
    1. There is no significant difference between the "animation group" and the "simulation group" in the effectiveness of learning content. And there is no significant interaction with the learner's prior knowledge.
    2. Significant differences were found between the "animation group" and the "simulation group" in the learning effectiveness of process skills, and the "simulation group" is better than the "animation group". However, this effect has no significant interaction with the learner's prior knowledge.
    3. The cognitive load of the "animation group" and the "simulation group" in the practical learning stage is significantly different, and the "animation group" is higher than the "simulation group". However, this difference has no significant interaction with the learner's prior knowledge.
    4. There is no significant difference in the cognitive load between the "animation group" and the "simulation group" in the overall curriculum, and there is no significant interaction with the learner's prior knowledge.

    誌謝 i 目錄 vii 表目錄 ix 圖目錄 xi 第一章 緒論 1 第一節 研究背景與動機 1 第二節 研究目的與問題 3 第三節 名詞解釋 4 第二章 文獻探討 7 第一節 科學探究與科學本質 7 第二節 電腦模擬輔助學習及相關文獻探討 15 第三節 多媒體學習認知理論 18 第四節 認知負荷理論 25 第三章 研究方法 31 第一節 研究架構 31 第二節 研究假設 32 第三節 研究參與者 33 第四節 研究設計 33 第五節 研究教材 34 第六節 研究工具 41 第四章 研究結果 43 第一節 統計樣本分析 43 第二節 Go-Lab不同的教學分組對學習者學習成效之影響 45 第三節 Go-Lab不同的教學分組對認知負荷感受之影響 47 第四節 先備知識程度在教學分組對學習成效的調節效果 48 第五節 先備知識程度在教學分組對認知負荷感受的調節效果 50 第五章 研究討論與建議 53 第一節 研究摘述 53 第二節 研究結果討論 54 第三節 研究限制與建議 57 第四節 結語 58 參考文獻 61 附錄 70 附錄一 測驗問卷 70 附錄二 學習成效試題評分規準 76

    中文部分
    李涵鈺(2014)。科技是發展還是阻礙學生學習?—“國際認知理論工作坊”側寫。國家教育研究院電子報,92。(原作者:Richard Saul Wurman)。取自:https://epaper.naer.edu.tw/index.php?edm_no = 92 & content_no = 2263
    林達森(2000)。合作建構教學與認知風格對國中學生生物能量概念學習之效應。(未發表之博士論文)。國立臺灣師範大學,臺北。
    許玫理、郭重吉(民82)。我國國民中學自然科學教師科學哲學觀點之調查研究。 科學教育,4,183-236。
    張靜儀(1995)。自然科探究教學法。屏師科學教育,1,36-45。
    張俊彥、陳盈霖(2000)。 不同電腦輔助教學 (CAI)模式對高中學生「恆星演化」學習成就及其態度之影響。師大學報: 科學教育類,45(2),1-20。
    陳密桃(2003)。認知負荷理論及其對教學的啟示。國立高雄師範大學教育系教育學刊,21,29-51。
    陳榮祥(2002)。西方科學哲學發展之初探。科學教育研究與發展,28,43-57。
    張靜嚳(1995)。何謂重構主義?中部地區科學教育簡訊,第三期。
    郭重吉(1996)。從建構主義談數理師資培育的革新。科學發展月刊,24(7),555-562。
    郭重吉(1992)。從建構主義的觀點探討中小學數理教學的改進。科學發展月刊,20(5),548-570。
    教育部(2014年11月28日)。十二年國民基本教育課程綱要。取自http://www.naer.edu.tw/ezfiles/0/1000/attach/87/pta_5320_2729842_56626.pdf
    彭文萱、熊召弟(2015)。優質科學電子教科書指標的建立與評鑑研究初探。教科書研究,8(2),1-32。
    楊淇(2011)。探究動畫為主的遺傳學課程對學生認知負荷與學習成效之影響(未發表之碩士論文)。國立臺灣師範大學,臺北。
    熊召弟(1994)。中美日科學(包括數學)教學系所培育計劃之比較。台北:教育部
    熊召弟(1996)。真實的科學認知環境。教學 科技與媒體,29,3-12。
    顏弘志(2004)。從建構主義看探究教學。科學教育研究與發展季刊。
    顧炳宏、陳瓊森、溫媺純(2011)。從學生的表現與觀點探討引導發現式教作為發展探究教學之折衷方案角色的成效-以密度概念為例。科學教育學刊, 19(3), 257-282。
    鐘敏綺, & 張世忠. (2002). 奠基於建構主義的 STS 於自然與生活科技領域之應用. 科學教育月刊, (254), 2-15.

    英文部分
    Abimbola, I. O. (1983). The relevance of the “new” philosophy of science for the science curriculum. School Science and Mathematics, 83(3), 181-192.
    Alessi, S. & Trollip, S. (1985). Computer-based instruction: Methods and development. Englewood Cliffs, NJ: Prentice Hall.
    Ausubel, D. P., Novak, J. D., & Hanesian, H. (1978). Educational psychology: A cognitive viewpoint. New York: Rinehart & Winston.
    Ayres, P. (2006). Using subjective measures to detect variations of intrinsic cognitive load within problems. Learning and instruction, 16(5), 389-400.
    Betrancourt, M. (2005). The animation and interactivity principles in multimedia learning. The Cambridge handbook of multimedia learning, 287-296.
    Brant, G., Hooper, E., & Sugrue, B. (1991). Which comes first the simulation or the lecture?. Journal of Educational Computing Research, 7(4), 469-481.
    Brünken, R., Plass, J. L., & Leutner, D. (2004). Assessment of cognitive load in multimedia learning with dual-task methodology: Auditory load and modality effects. Instructional Science, 32(1), 115-132.
    Cartier, J. L., & Stewart, J. (2000). Teaching the nature of inquiry: Further developments in a high school genetics curriculum. Science & Education, 9(3), 247-267.
    Chandler, P., & Sweller, J. (1991). Cognitive load theory and the format of instruction. Cognition and instruction, 8(4), 293-332.
    Chandler, P., & Sweller, J. (1992). The split‐attention effect as a factor in the design of instruction. British Journal of Educational Psychology, 62(2), 233-246.
    Clark, R. C., Nguyen, F., Sweller, J., & Baddeley, M. (2006). Efficiency in learning: Evidence-based guidelines to manage cognitive load. Performance Improvement, 45(9), 46–47. doi:10.1002/pfi.4930450920
    Crawford, B. A. (2000). Embracing the essence of inquiry: New roles for science teachers. Journal of Research in Science Teaching: The Official Journal of the National Association for Research in Science Teaching, 37(9), 916-937.
    Croker, S., & Buchanan, H. (2011). Scientific reasoning in a real‐world context: The effect of prior belief and outcome on children's hypothesis‐testing strategies. British Journal of Developmental Psychology, 29(3), 409-424.
    D’Angelo, C., Rutstein, D., Harris, C., Bernard, R., Borokhovski, E., & Haertel, G. (2014). Simulations for STEM learning: Systematic review and meta-analysis. Menlo Park: SRI International.
    de Jong, T. (2006). Technological advances in inquiry learning. Science.
    de Jong, T., & Van Joolingen, W. R. (1998). Scientific discovery learning with computer simulations of conceptual domains. Review of educational research, 68(2), 179-201.
    de Jong, T., Sotiriou, S., & Gillet, D. (2014). Innovations in STEM education: the Go-Lab federation of online labs. Smart Learning Environments, 1(1), 3.
    de Jong, T., van Joolingen, W. R., Swaak, J., Veermans, K., Limbach, R., King, S., & Gureghian, D. (1998). Self-directed learning in simulation-based discovery environments. Jourmal of Computer Assisted Learning, 14(3), 235-246.
    Duncan, R. G., & Reiser, B. J. (2007). Reasoning across ontologically distinct levels: Students' understandings of molecular genetics. Journal of Research in Science Teaching: The Official Journal of the National Association for Research in Science Teaching, 44(7), 938-959.
    Dori, Y. J., & Barak, M. (2001). Virtual and physical molecular modeling: Fostering model perception and spatial understanding. Journal of Educational Technology & Society, 4(1), 61-74.
    Edelson, D. C., Gordin, D. N., & Pea, R. D. (1999). Addressing the challenges of inquiry-based learning through technology and curriculum design. Journal of the learning sciences, 8(3-4), 391-450.
    Evans, C., & Gibbons, N. J. (2007). The interactivity effect in multimedia learning. Computers & Education, 49(4), 1147-1160.
    Fabricius, W. V. (1983). Piaget’s theory of knowledge: It’s philosophical context. Human Development, 26(6), 325-334.
    Gelbart, H., Brill, G., & Yarden, A. (2009). The impact of a web-based research simulation in bioinformatics on students’ understanding of genetics. Research in science education, 39(5), 725.
    Gerjets, P., Scheiter, K., & Cierniak, G. (2009). The scientific value of cognitive load theory: A research agenda based on the structuralist view of theories. Educational Psychology Review, 21(1), 43-54.
    González‐Cruz, J., Rodríguez‐Sotres, R., & Rodríguez‐Penagos, M. (2003). On the convenience of using a computer simulation to teach enzyme kinetics to undergraduate students with biological chemistry‐related curricula. Biochemistry and Molecular Biology Education, 31(2), 93-101.
    Hamilton, P (1979). Process entropy and cognitive control: Mental load in internalized thought processes. In N. Moray (Ed.) Mental workload: Its theory and measurement (pp 289-298). New York: Plenum Press
    Harrison, A. M., & Schunn, C. D. (2004). The transfer of logically general scientific reasoning skills. In Proceedings of the Annual Meeting of the Cognitive Science Society (Vol. 26, No. 26).
    Hofstein, A., & Lunetta, V. N. (2004). The laboratory in science education: Foundations for the twenty‐first century. Science education, 88(1), 28-54.
    Huppert, J., Lomask, S. M., & Lazarowitz, R. (2002). Computer simulations in the high school: Students' cognitive stages, science process skills and academic achievement in microbiology. International Journal of Science Education, 24(8), 803-821.
    Kalyuga, S., Rikers, R., & Paas, F. (2012). Educational implications of expertise reversal effects in learning and performance of complex cognitive and sensorimotor skills. Educational Psychology Review, 24(2), 313-337.
    Keselman, A. (2003). Supporting i normative understanding of multivariable causality. Journal of nquiry learning by promoting Research in Science Teaching, 40(9), 898-921.
    Keys, C. W., & Bryan, L. A. (2001). Co‐constructing inquiry‐based science with teachers: Essential research for lasting reform. Journal of Research in Science Teaching: The Official Journal of the National Association for Research in Science Teaching, 38(6), 631-645.
    Khan, S. (2011). New pedagogies on teaching science with computer simulations. Journal of Science Education and Technology, 20(3), 215-232.
    Krajcik, J. S., Czerniak, C. M., Czerniak, C. L., & Berger, C. F. (2003). Teaching science in elementary and middle school classrooms: A project-based approach. McGraw-Hill Humanities Social.
    Krajcik, J., Blumenfeld, P. C., Marx, R. W., Bass, K. M., Fredricks, J., & Soloway, E. (1998). Inquiry in project-based science classrooms: Initial attempts by middle school students. Journal of the Learning Sciences, 7(3-4), 313-350.
    Lazonder, A. W., Hagemans, M. G., & de Jong, T. (2010). Offering and discovering domain information in simulation-based inquiry learning. Learning and Instruction, 20(6), 511-520.
    Lazonder, A. W., & Harmsen, R. (2016). Meta-analysis of inquiry-based learning: Effects of guidance. Review of educational research, 86(3), 681-718.
    Lazonder, A. W., Wilhelm, P., & van Lieburg, E. (2009). Unraveling the influence of domain knowledge during simulation-based inquiry learning.
    Instructional Science, 37(5), 437-451.
    Leahy, W., & Sweller, J. (2016). Cognitive load theory and the effects of transient information on the modality effect. Instructional Science, 44(1), 107-123.
    Lewis, J., & Kattmann, U. (2004). Traits, genes, particles and information: re‐visiting students’ understandings of genetics. International Journal of Science Education, 26(2), 195-206.
    Lewis, R& Want, D(1980)Educational Computing at Chelsea (1969-79).In Computer Assisted Learning (eds. R. Lewis E D. Tagg) pps.163-176. North Holland Publishing, Amsterdam
    Liu, H. C., & Chuang, H. H. (2011). Investigation of the impact of two verbal instruction formats and prior knowledge on student learning in a simulation-based learning environment. Interactive Learning Environments, 19(4), 433-446.
    Marbach-Ad, G., & Stavy, R. (2000). Students' cellular and molecular explanations of genetic phenomena. Journal of Biological Education, 34(4), 200-205.
    Marcus, N., Cooper, M., & Sweller, J. (1996). Understanding instructions. Journal of educational psychology, 88(1), 49-63
    Marshall, J. A., & Young, E. S. (2006). Preservice teachers' theory development in physical and simulated environments. Journal of Research in Science Teaching: The Official Journal of the National Association for Research in Science Teaching, 43(9), 907-937.
    Mayer, R. E., & Moreno, R. (2003). Nine ways to reduce cognitive load in multimedia learning. Educational psychologist, 38(1), 43-52.
    Miller, C. S., Lehman, J. F., & Koedinger, K. R. (1999). Goals and learning in microworlds. Cognitive Science, 23(3), 305-336.
    Miller, G. A. (1956). The magical number seven, plus or minus two: Some limits on our capacity for processing information. Psychological review, 63(2), 81.
    Moreno, R., & Mayer, R. E. (2005). Role of guidance, reflection, and interactivity in an agent-based multimedia game. Journal of educational psychology, 97(1), 117.
    Mulder, Y. G., Lazonder, A. W., & de Jong, T. (2011). Comparing two types of model progression in an inquiry learning environment with modelling facilities. Learning and Instruction, 21(5), 614-624.
    National Research Council. (1996). National science education standards. National Academies Press.
    Novak, J. D., & Gowin, D. B. (1984). Concept mapping for meaningful learning. In Learning how to learn, (pp. 15-54). NY: Cambridge University Press.
    Nussbaum, J. (1989). Classroom conceptual change: philosophical perspectives. International Journal of Science Education, 11(5), 530-540.
    Olympiou, G., Zacharias, Z., & Dejong, T. (2013). Making the invisible visible: Enhancing students’ conceptual understanding by introducing representations of abstract objects in a simulation. Instructional science, 41(3), 575-596.
    Parush, A., Hamm, H., & Shtub, A. (2002). Learning histories in simulation-based teaching: the effects on self-learning and transfer. Computers & Education, 39(4), 319-332.
    Pass, F. G. W. (1992). Training strategies for attaining transfer of problem – solving skill in statistics: A cognitive load approach. Journal of Educational Psychology, 87(2), 319-334.
    Paas, F. G., & Van Merriënboer, J. J. (1994). Variability of worked examples and transfer of geometrical problem-solving skills: A cognitive-load approach. Journal of educational psychology, 86(1), 122.
    Paas, F., Tuovinen, J. E., Van Merrienboer, J. J. G., & Darabi, A. A. (2005). A motivational perspective on the relation between mental effort and performance: Optimizing learner involvement in instruction. Education Technology Research and Development , 53(3), 25-34.
    Pedaste, M., Mäeots, M., Siiman, L. A., de Jong, T., Van Riesen, S. A., Kamp, E. T., ... & Tsourlidaki, E. (2015). Phases of inquiry-based learning: Definitions and the inquiry cycle. Educational research review, 14, 47-61.
    Plass, J. L., Milne, C., Homer, B. D., Schwartz, R. N., Hayward, E. O., Jordan, T., ... & Barrientos, J. (2012). Investigating the effectiveness of computer simulations for chemistry learning. Journal of Research in Science Teaching, 49(3), 394-419.
    Posner, G. J., Strike, K. A., Hewson, P. W., & Gertzog, W. A. (1982). Accommodation of a scientific conception: Toward a theory of conceptual change. Science education, 66(2), 211-227.
    Renken, M. D., & Nunez, N. (2013). Computer simulations and clear observations do not guarantee conceptual understanding. Learning and Instruction, 23, 10-23.
    Ritchie, S. M., & Rigano, D. L. (1996). Laboratory apprenticeship through a student research project. Journal of Research in Science Teaching: The Official Journal of the National Association for Research in Science Teaching, 33(7), 799-815.
    Richardson, V. (2003). Constructivist pedagogy. Teachers college record, 105(9), 1623-1640.
    Scalise, K., Timms, M., Moorjani, A., Clark, L., Holtermann, K., & Irvin, P. S. (2011). Student learning in science simulations: Design features that promote learning gains. Journal of Research in Science Teaching, 48(9), 1050-1078.
    Shapere, D. (1987). Method in the philosophy of science and epistemology: How to inquire about inquiry and knowledge. In N. J. Nersessian (Ed.), The Process of science: contemporary philosophical approaches to understanding scientific practice. (pp.1-39). Dordrecht: Martinus Nijhoff Publishers.
    Singh, A. M., Marcus, N., & Ayres, P. (2012). The transient information effect: Investigating the impact of segmentation on spoken and written text. Applied Cognitive Psychology, 26(6), 848-853.
    Spector, J. M., M. D. Merrill, J. van Merrienboer, and M. P. Driscoll, eds. 2008. Handbook of Research on Educational Communications and Technology. New York: Lawrence Erlbaum
    Stewart, J., & Hafner, R. (1994). The problem solving literature in the biology education. Handbook of research on science teaching and learning. Riverside NJ: MacMillan.
    Stewart, J., Cartier, J. L., & Passmore, C. M. (2005). Developing understanding through model-based inquiry. How students learn, 515-565.
    Stone, D. C. (2007). Teaching chromatography using virtual laboratory exercises. Journal of Chemical Education, 84(9), 1488-1496.
    Sweller, J. (1993). Some cognitive processes and their consequences for the organisation and presentation of information. Australian Journal of Psychology, 45(1), 1-8.
    Sweller, J., Van Merrienboer, J. J., & Paas, F. G. (1998). Cognitive architecture and instructional design. Educational psychology review, 10(3), 251-296.
    Trundle, K. C., & Bell, R. L. (2010). The use of a computer simulation to promote conceptual change: A quasi-experimental study. Computers & Education, 54(4), 1078-1088.
    Van Joolingen, W. R., de Jong, T., & Dimitrakopoulou, A. (2007). Issues in computer supported inquiry learning in science. Journal of Computer Assisted Learning, 23(2), 111-119.
    von Glasersfeld, E (1996). Introduction: Aspects of constructivism. In C T. Fosnot (Ed), Constructivism: theory. perspectives and practice New York Teachers College, Columbia University
    Vygotsky, L. S. (1980). Mind in society: The development of higher psychological processes. Harvard university press.
    White, B. Y., & Frederiksen, J. R. (1998). Inquiry, modeling, and metacognition: Making science accessible to all students. Cognition and instruction, 16(1), 3-118.
    Winn, W., Stahr, F., Sarason, C., Fruland, R., Oppenheimer, P., & Lee, Y. L. (2006). Learning oceanography from a computer simulation compared with direct experience at sea. Journal of Research in Science Teaching, 43(1), 25-42

    無法下載圖示 本全文未授權公開
    QR CODE