簡易檢索 / 詳目顯示

研究生: 吳柏緯
Wu, Po-Wei
論文名稱: 利用機器學習預測下一期股價報酬-從基金投資組合來看
Predicting Stock Returns via Machine Learning-Evidence from Top Mutual Fund Holdings
指導教授: 賴慧文
Christine W. Lai
何宗武
Ho, Tsung-Wu
口試委員: 王衍智
Wang, Yan-Zhi
賴慧文
Lai, Whuei-Wen
何宗武
Ho, Tsung-Wu
口試日期: 2021/06/30
學位類別: 碩士
Master
系所名稱: 全球經營與策略研究所
Graduate Institute of Global Business and Strategy
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 50
中文關鍵詞: 盈餘管理基金經理人的選股能力股價報酬率機器學習
英文關鍵詞: earnings management, fund managers' selective abilities, stock return, machine learning
研究方法: 縱貫性研究
DOI URL: http://doi.org/10.6345/NTNU202100870
論文種類: 學術論文
相關次數: 點閱:174下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 績效好的基金經理人在選股時的想法為何?一直都是學術界與投資人好奇的問題。本文透過Classification Tree模型的學習方法,使用財務領域中四個面向之數據—包括財務報表科目(包含ROE杜邦分析)、股票估值、公司之盈餘管理相關因子與財務報表外之公司軟資訊(Soft Information),分析基金經理人使用公司各種面向資訊之程度與其預測能力。進一步探討不同投資風格之基金經理人,在選股時所參考的決策因子與路徑是否有所不同?本研究發現對於基金經理人來說,最為重要的選股決策因子為營運之現金流量。此外,基金經理人有更多的機會接觸到軟資訊,而實證結果Classification Tree模型中Jones模型相關變數也有在節點中,並且發現在市值較低的公司中,財務報表盈餘管理之情況,會影響基金經理人選股的判斷,進而影響公司的股票報酬率。更為有趣的是,Classification Tree模型除了可以避免掉變數共線性問題等的模型限制,並且相較於迴歸模型可以得知基金經理人選股是有前後重要順序的,透過Classification Tree節點中專案討論,確定此模型結果與實務上是一致的,不同投資風格的基金經理人—包括投資風格較廣、投資於特定產業或投資於特定公司規模—在選股時所參考之決策因子與路徑相當不同。最後,在資料經過GLM、Classification Tree或SVM之訓練後,模型預測財務報表公布後之個股報酬率方向可達到六成準確率,而將公司資料堆疊訓練之強韌性分析,預測準確率更可達六成五。

    What is the decision-making by high-performing mutual fund managers when they select stocks? It has always been a question that investors are curious about. The purpose of this study is to analyze the key factors and the decision-making paths of top-performing fund managers by utilizing the learning method of Classification Tree model. In particular, this study uses the holding portfolio data of top-performing fund managers, and collect the stock characteristics of top 5% holdings selected by these fund managers. Four attributes of stock characteristics are considered: (1) financial performance collected from a firm’s financial statements (including ROE and elements in DuPont analysis), (2) stock evaluation information collected from a firm’s stock performance, (3) information associated with a firm’s earnings management, and (4) soft information, which is related to a firm’s private information. Since there are many fund styles, this study further explores whether fund managers with different investment styles have different decision factors (tree nodes) and tree paths when they select stocks. There are several findings. First, we find that for top-performing fund managers, the most important factor of selecting stocks is a firm’s operating cash flow. Second, we document that for companies with low market capitalization, earnings management variable (from Jones’s model) is selected as the tree node in the Classification Tree model, indicating that a firm’s earnings management behavior will become one of the key factors when fund managers selecting stocks for small cap funds and hence affect the company's stock return. Third, one advantage of our results is that the order of key stock-selection factors by top-performing fund manager can be analyzed in the tree paths and tree nodes. We further collect firm information from newspapers and document that for a particular firm, the key factors selected in tree nodes are consistent with the factors discussed in the newspapers for the same firm. In addition, we find that the key factors (tree nodes) and tree paths (order of tree nodes) are quite different for fund managers with different investment styles (i.e., broad market funds, sector funds, or funds with different market caps). Finally, when the data is trained by GLM, Classification Tree, or SVM, the accuracy rate of model predicting the trend of stock returns after the financial statements are published can reach 60%. For robustness analysis, such as stacking company data for training, the prediction accuracy rate are as high as almost 65%.

    第一章、緒論 1 第一節、研究背景 1 第二節、研究目的 1 第三節、研究流程 3 第二章、文獻探討 4 第一節、基金經理人的選股及擇時能力之研究 4 第二節、財務報表盈餘管理之研究 10 第三節、機器學習應用之研究 11 第三章、研究方法 12 第一節、資料來源與樣本選取 12 第二節、研究方法 12 第三節、主要模型與變數定義 13 第四章、研究結果 20 第一節、資料變數說明 20 第二節、GLM模型結果 27 第三節、Classification Tree模型結果 31 第四節、SVM模型結果 41 第五節、模型預測效果比較 42 第五章、結論 45 第一節、結論 45 第二節、研究限制 47 參考文獻 48

    Alexander, G. J., Cici, G., & Gibson, S. (2007). Does motivation matter when assessing trade performance? An analysis of mutual funds. The Review of Financial Studies, 20(1), 125-150.
    Ashwin Kumar, N., Smith, C., Badis, L., Wang, N., Ambrosy, P., & Tavares, R. (2016). ESG factors and risk-adjusted performance: a new quantitative model. Journal of Sustainable Finance & Investment, 6(4), 292-300.
    Baker, M., Litov, L., Wachter, J. A., & Wurgler, J. (2004). Can mutual fund managers pick stocks? Evidence from the trades prior to earnings announcements (0898-2937).
    Berk, J. B., & Van Binsbergen, J. H. (2015). Measuring skill in the mutual fund industry. Journal of Financial Economics, 118(1), 1-20.
    Bollen, N. P., & Busse, J. A. (2001). On the timing ability of mutual fund managers. The journal of finance, 56(3), 1075-1094.
    Broadstock, D. C., Chan, K., Cheng, L. T., & Wang, X. (2021). The role of ESG performance during times of financial crisis: Evidence from COVID-19 in China. Finance research letters, 38, 101716.
    Clark, G. L., Feiner, A., & Viehs, M. (2015). From the stockholder to the stakeholder: How sustainability can drive financial outperformance. Available at SSRN 2508281.
    Cornell, B. (2021). ESG preferences, risk and return. European Financial Management, 27(1), 12-19.
    Coval, J. D., & Moskowitz, T. J. (1999). Home bias at home: Local equity preference in domestic portfolios. The journal of finance, 54(6), 2045-2073.
    Cremers, K. M., & Petajisto, A. (2009). How active is your fund manager? A new measure that predicts performance. The Review of Financial Studies, 22(9), 3329-3365.
    Dalal, K. K., & Thaker, N. (2019). ESG and corporate financial performance: a panel study of Indian companies. IUP Journal of Corporate Governance, 18(1), 44-59.
    Daniel, K., Grinblatt, M., Titman, S., & Wermers, R. (1997). Measuring mutual fund performance with characteristic‐based benchmarks. The journal of finance, 52(3), 1035-1058.
    DeFond, M. L., & Park, C. W. (1997). Smoothing income in anticipation of future earnings. Journal of accounting and economics, 23(2), 115-139.
    Dye, R. A. (1988). Earnings management in an overlapping generations model. Journal of accounting research, 195-235.
    Fama, E. F., & French, K. R. (2010). Luck versus skill in the cross-section of mutual fund returns. In The Fama Portfolio (pp. 261-300). University of Chicago Press.
    Foerster, S., Tsagarelis, J., & Wang, G. (2017). Are cash flows better stock return predictors than profits? Financial Analysts Journal, 73(1), 73-99.
    Friede, G., Busch, T., & Bassen, A. (2015). ESG and financial performance: aggregated evidence from more than 2000 empirical studies. Journal of Sustainable Finance & Investment, 5(4), 210-233.
    Fudenberg, D., & Tirole, J. (1995). A theory of income and dividend smoothing based on incumbency rents. Journal of Political economy, 103(1), 75-93.
    Gu, S., Kelly, B., & Xiu, D. (2020). Empirical asset pricing via machine learning. The Review of Financial Studies, 33(5), 2223-2273.
    Halbritter, G., & Dorfleitner, G. (2015). The wages of social responsibility—where are they? A critical review of ESG investing. Review of Financial Economics, 26, 25-35.
    Han, J.-J., Kim, H. J., & Yu, J. (2016). Empirical study on relationship between corporate social responsibility and financial performance in Korea. Asian Journal of Sustainability and Social Responsibility, 1(1), 61-76.
    Henriksson, R. D. (1984). Market timing and mutual fund performance: An empirical investigation. Journal of business, 73-96.
    Henriksson, R. D., & Merton, R. C. (1981). On market timing and investment performance. II. Statistical procedures for evaluating forecasting skills. Journal of business, 513-533.
    Hvidkjær, S. (2017). ESG investing: a literature review. Report prepared for Dansif.
    Hyndman, R. J., & Athanasopoulos, G. (2018). Forecasting: principles and practice. OTexts.
    James, G., Witten, D., Hastie, T., & Tibshirani, R. (2013). An introduction to statistical learning (Vol. 112). Springer.
    Jones, J. J. (1991). Earnings management during import relief investigations. Journal of accounting research, 29(2), 193-228.
    Kacperczyk, M., Nieuwerburgh, S. V., & Veldkamp, L. (2014). Time‐varying fund manager skill. The journal of finance, 69(4), 1455-1484.
    Kacperczyk, M., Sialm, C., & Zheng, L. (2005). On the industry concentration of actively managed equity mutual funds. The journal of finance, 60(4), 1983-2011.
    Kacperczyk, M., Van Nieuwerburgh, S., & Veldkamp, L. (2009). Rational attention allocation over the business cycle.
    Lambert, R. A. (1984). Income smoothing as rational equilibrium behavior. Accounting review, 604-618.
    Landi, G., & Sciarelli, M. (2019). Towards a more ethical market: the impact of ESG rating on corporate financial performance. Social Responsibility Journal.
    Lanza, A., Bernardini, E., & Faiella, I. (2020). Mind the gap! Machine learning, ESG metrics and sustainable investment. Machine Learning, ESG Metrics and Sustainable Investment (June 26, 2020). Bank of Italy Occasional Paper(561).
    Limkriangkrai, M., Koh, S., & Durand, R. B. (2017). Environmental, social, and governance (ESG) profiles, stock returns, and financial policy: Australian evidence. International Review of Finance, 17(3), 461-471.
    Mohammad, W. M. W., & Wasiuzzaman, S. (2021). Environmental, Social and Governance (ESG) disclosure, competitive advantage and performance of firms in Malaysia. Cleaner Environmental Systems, 2, 100015.
    Murphy, K. J., & Zimmerman, J. L. (1993). Financial performance surrounding CEO turnover. Journal of Accounting and Economics, 16(1-3), 273-315.
    Partapuoli, P. J., & Breitz, C. (2020). How is ESG Affecting Stock Returns? A Portfolio-and Panel Data Analysis of US Firms in the S&P 500.
    Pereira da Silva, P. (2020). ESG Disclosure and the Information Content of Stock Prices. Available at SSRN 3630120.
    Sahut, J.-M., & Pasquini-Descomps, H. (2015). ESG impact on market performance of firms: International Evidence. Management International/International Management/Gestiòn Internacional, 19(2), 40-63.
    Treynor, J., & Mazuy, K. (1966). Can mutual funds outguess the market. Harvard Business review, 44(4), 131-136.
    Trueman, B., & Titman, S. (1988). An explanation for accounting income smoothing. Journal of Accounting Research, 127-139.
    Velte, P. (2017). Does ESG performance have an impact on financial performance? Evidence from Germany. Journal of Global Responsibility.
    Warner, J. B., Watts, R. L., & Wruck, K. H. (1988). Stock prices and top management changes. Journal of financial Economics, 20, 461-492.
    Weisbach, M. S. (1988). Outside directors and CEO turnover. Journal of financial Economics, 20, 431-460.
    陳祐祥, 曹慧華, & 黃秀珍. (2017). 上市公司股價報酬率決定因子之研究. 管理資訊計算, 6, 1-9.

    下載圖示
    QR CODE