簡易檢索 / 詳目顯示

研究生: 游証鈞
Yu, Cheng-Chun
論文名稱: 氧化鎢薄膜沉積於ITO玻璃及SKD-11工具鋼上之特性分析研究
Characteristic of WO3 Thin Film Deposited on ITO Glass and SKD-11 Tool Steel
指導教授: 程金保
Cheng, Chin-Pao
鄧敦平
Teng, Tun-Ping
學位類別: 碩士
Master
系所名稱: 機電工程學系
Department of Mechatronic Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 63
中文關鍵詞: 電沉積氧化鎢薄膜磨耗
英文關鍵詞: electrodeposited process, tungsten oxide, thin film, abrasion
DOI URL: http://doi.org/10.6345/THE.NTNU.DME.015.2018.E08
論文種類: 學術論文
相關次數: 點閱:158下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 氧化鎢(Tungsten oxide,WO3)薄膜具有化學穩定性及數個過渡相,適當的控制氧化鎢的化學劑量比與組織、結構等,可以有利於提昇薄膜的機械性質,且有研究指出氧化鎢薄膜具抗磨耗特性,在機械工業上具有應用潛力。本研究利用電沉積法來製備氧化鎢薄膜。為了完整探討成長薄膜之製程、特性與應用,本研究首先將進行製程參數探討與特性分析,使用電沈積法分別在氧化銦錫 (ITO) 導電玻璃以及SKD-11工具鋼上沉積氧化鎢薄膜,經由控制沉積時間及熱處理條件獲得不同膜厚、表面粗糙度以及薄膜結晶性等物理特性,以求出薄膜製程的最佳化參數。接著再以SEM、XRD、奈米壓痕機、磨耗試驗機等儀器對薄膜進行表面形貌觀察、結晶分析、接觸角量測、奈米壓痕測試、磨耗實驗等量測分析,並針對薄膜的表面粗糙度、結晶性、硬度、楊氏係數與抗磨耗等特性探討。實驗結果顯示,熱處理溫度為影響氧化鎢薄膜結晶性的主要因素;以ITO為基板沉積的氧化鎢薄膜,在經過350℃退火後開始轉變為結晶相,並在經過500℃以上退火後出現明顯之氧化鎢(200)立方晶特徵峰;而以SKD-11為基板沉積的氧化鎢薄膜,在未經退火及400℃以下的熱處理條件,薄膜呈非晶態;在經過500℃以上的熱處理條件後結晶轉變形成立方晶結構。結晶性則影響了薄膜的表面粗糙度、硬度、楊氏係數等,非晶型態的薄膜表面並未生成明顯的晶粒結構,所以表粗較低,而經過熱處理之薄膜因晶粒逐漸成長而具有較大的表面粗糙度;而經過500℃以上熱處理後,氧化鎢薄膜具有規則排列之晶格結構,所以表面粗糙度反而些許下降;並從奈米壓痕實驗中可得知,經過熱處理後的氧化鎢薄膜,具有較佳的硬度及楊氏係數;而硬度及楊氏係數則會間接影響氧化鎢薄膜的耐磨耗性能,從磨耗實驗數據得知本研究之氧化鎢薄膜與單純母材試片相比,確實具有一定的抗磨耗特性,且其中經過熱處理的薄膜抗磨耗特性更是優於其他參數。綜合以上所述,本研究之電沉積氧化鎢薄膜經過適當的熱處理後,各項性質如硬度、楊氏係數及耐磨耗性等皆會提升。

    Tungsten oxide (WO3), a type of transition metal oxides, is well recognized by its stable chemical property and transition phases for many applications namely photocatalysis, sensing, and anti-abrasion coating. The excellent mechanical and anti-wear properties of tungsten oxide thin film could also improve the tribology behavior for many machinery applications. However, to fabricate the tungsten oxide thin film for further application requires sophisticate machinery and expertise. Although several methods have been adapted for tungsten oxide thin film production including evaporation, sol-gel, chemical vapor deposition, RF sputtering as well as DC reactive magnetron sputtering, enhanced electrodepositing approach proposed below may strengthen this technology even more. Benefit from the electrodepositing process, the tungsten oxide thin films improve their photocatalysis, electrochromic and anti-abrasion property. Moreover, the advantages of electrodeposited technology lie in its fast preparation speed, low cost, no vacuum-environment required, well suited for coating of large area, and its potential for continuous production. It also sustains low temperature for the rapid preparation of those required coating layers. To investigate the progress, characteristic, and application of WO3 thin film, this study is to formulate thin films on ITO glass and SKD-11 tool steel substrate by using electrodeposited process. Furthermore, the crystalline and nanoindentation properties of thin films have been analyzed when annealing under various temperatures. Experimental results show that the films are dense and have good adhesion with ITO and SKD-11 substrate by appropriately controlling processing parameters. The WO3 thin films became crystalline after annealing at the temperature above 500℃. Consequently, the annealed WO3 thin film exhibited better mechanical properties than the as-deposited film, including hardness and young’s modulus. At the same time, the anti- abrasion properties of the film are also improved.

    第一章 緒論 1 1.1 研究背景 1 1.2 研究動機與目的 3 第二章 文獻回顧 5 2.1 薄膜成形 5 2.1.1 薄膜成形技術 5 2.1.2 薄膜成型技術種類 5 2.1.3 成形技術與用途 5 2.2 電沉積法(Electrodeposition) 6 2.2.1 傳統電沉積 6 2.2.2 電沉積氧化鎢薄膜 6 2.2.3 氧化鎢鍍液調配 7 2.3 氧化鎢特性 7 2.3.1 氧化鎢材料性質 7 2.3.2 氧化鎢機械性質 8 2.3.3 氧化鎢抗磨耗特性 11 第三章 實驗步驟 16 3.1 實驗流程規劃 16 3.2 實驗用品及耗材 17 3.3 鍍液調配 18 3.4 基板前處理 19 3.5 電沉積法製備氧化鎢薄膜 19 3.6 熱處理提升薄膜之結晶性 20 3.7 薄膜特性分析 20 3.7.1 XRD結晶分析 20 3.7.2 接觸角量測 22 3.7.3 薄膜表面粗糙度量測分析 23 3.7.4 薄膜表面形貌及膜厚量測分析 24 3.7.5 奈米壓痕試驗 25 3.7.6 磨耗試驗 27 第四章 結果與討論 29 4.1 ITO基板沉積氧化鎢之表面形貌及膜厚分析 29 4.2 結晶型態分析 33 4.3 氧化鎢薄膜之親疏水性分析 37 4.3.1 ITO基板沉積氧化鎢薄膜接觸角量測 37 4.3.2 SKD-11基板沉積氧化鎢薄膜之表面粗糙度 39 4.4 SKD-11基板沉積氧化鎢薄膜硬度與楊氏係數分析 42 4.5 磨耗試驗 44 4.5.1 SKD-11基板沉積WO3薄膜之抗磨耗性分析 44 4.5.2 SKD-11基板沉積WO3薄膜之磨耗表面樣貌分析 45 第五章 結論與未來展望 56 5.1 結論 56 5.2 未來展望 58 參考文獻 59

    [1] M. Woydt, A. Skopp, I. Dorfel I, K. Witke, “Wear engineering oxides/anti-wear oxides”, Wear, 218, 84-95, 1998.
    [2] V.R. Bucha, A. K. Chawla, S. K. Rawal, “Review on electrochromic property for WO3 thin films using different deposition techniques”, Materials Today: Proceedings, 3, 1429–1437, 2016.
    [3] K. Bange, “Colouration of tungsten oxide films: A model for optically active coatings”, Solar Energy Materials & Solar Cells, 58, 1-131, 1999.
    [4] F. Beck, M. Dahlhaus and J. Appl, “Electrochromic coatings for smart windows”, Surface Science, 23, 1127-1131, 1993.
    [5] O.D. Greenwood, S.C. Moulzolf, P.J. Blau, R.J. Lad, “The influence of microstructure on tribological properties of WO3 thin films”, Wear, 232, 84-90, 1999.
    [6] T. Polcar, N.M.G. Parreira, A. Cavaleiro, “Tungsten oxide with different oxygen contents: Sliding properties”, Vacuum, 81, 1426–1429, 2007.
    [7] E. Lugscheider, O. Knotek, K. Bobzin, S. Barwulf, “Tribological properties, phase generation and high temperature phase stability of tungsten- and vanadium-oxides deposited by reactive MSIP-PVD process for innovative lubrication applications”, Surface and Coating Technology, 133–134, 362-368, 2000.
    [8] C.W. Ong, H.Y. Wong, G.K.H. Pang, K.Z. Baba-Kishi, and C.L. Choy, “Relationship between the microstructure and Nano indentation hardness of thermally evaporated and magnetron-sputtered electrochromic tungsten oxide films”, Journal of Materials Research, 16, 1541-1548, 2001.
    [9] N.M.G. Parreir, N.J.M. Carvalho, A. Cavaleiro, “Synthesis, structural and mechanical characterization of sputtered tungsten oxide coatings”, Thin Solid Films, 510, 191 – 196, 2006.
    [10] Jose L. Enriquez-Carrejo, Manuel A. Ramos, Jose Mireles-Jr-Garcia, Abel Hurtado-Macias, “Nano-mechanical and structural study of WO3 thin films”, Thin Solid Films, 606, 148–154,2016.
    [11] M. M. Hasan, A. S. M. A. Haseeb and H. H. Masjuki, “Structural and mechanical properties of nanostructured tungsten oxide thin films”, Surface Engineering, 28, 778-785, 2012.
    [12] M. A. Mamun K. Zhang, H. Baumgart and A. A. Elmustafa, “Nanomechanical and Morphological Characterization of Tungsten Trioxide (WO3) Thin Films Grown by Atomic Layer Deposition”, ECS Journal of Solid State Science and Technology, 4, 398-401, 2015.
    [13] Z. Dimitrova, D. Gogova, “On the structure, stress and optical properties of CVD tungsten oxide films”, Materials Research Bulletin, 40, 333–340, 2005.
    [14] P. V. Ashrit, “Dry lithiation study of nanocrystalline, polycrystalline and amorphous tungsten trioxide thin-films”, Thin Solid Films, 385, 81-88, 2001.
    [15] C. Bechinger, H. Mufer, C. Schafle, O. Sundberg, P. Leiderer, “Submicron metal oxide structures by a sol-gel process on patterned substrates”, Thin Solid Films, 366, 135-138, 2000.
    [16] L. Meda, R.C. Breitkopf, T.E. Haas, R.U. Kirss, “Investigation of electrochromic properties of nanocrystalline tungsten oxide thin film”, Thin Solid Films, 402, 126-130, 2002.
    [17] A. Azen, M. Kitenbergs and U. Kanders, “Evaporation of tungsten oxides: A mass-spectrometric study of the vapour contents”, Vacuum, 46,745-747, 1995.
    [18] J.N. Yao, P. Chen, and A. Fujishima, “Electrochromic behavior of electrodeposited tungsten oxide thin films”, Journal of Electroanalytical Chemistry, 406, 223-226, 1996.
    [19] C. P. Cheng and S. H. Lin, “Electrochromic Properties and Raman Spectroscopy Analysis of Tungsten Oxide Thin Film by RF Sputter”, Advanced Materials Research, 418-420,328-332, 2012.
    [20] C. P. Cheng, Y. C. Yu, The 4th International Conference on Technological Advances of Thin Films & Surface Coatings, Singapore, Mar 15, 2008.
    [21] C. P. Cheng, F. S. Sie, H. L. Sung, Y. M. Shang, E-MRS 2012 Spring Meeting, Strasbourg Congress Centre, France, May 14-18,2012..
    [22] L. Lin, C.P. Cheng, and T.P. Teng, “Electrodeposition-Based Fabrication and Characteristics of Tungsten Trioxide Thin Film”, Journal of Nanomaterials, (2016, Apr), Article ID 3623547,12 pages.
    [23] C.P. Cheng, C.P. Chou, C.H. Hsu, T.C. Teng, C.H. Cheng, Y.Y. Syu, “Investigation of mechanical bending instability in flexible low-temperature-processed electrochromic display devices”, Thin Solid Films, 584, 94-97, 2015.
    [24] C.P. Cheng, Y. Kuo, C.H. Cheng, Z.W. Zheng, “Operation mechanism investigation of electrochromic display devices using tungsten oxides based on solid-state metal–oxide–metal capacitor structures”, Solid-State Electronics, 99, 16-20, 2014.
    [25] C.P. Cheng, Y. Kuo, C.P. Chou, C.H. Cheng, T.P. Teng, “Performance improvement of electrochromic display devices employing micro-size precipitates of tungsten oxide”, Applied Physics A, 116, 1553-1559, 2014.
    [26] M. Giannouli, G. Leftheriotis, “The effect of precursor aging on the
    morphology and electrochromic performance of electrodeposited tungsten oxide films”, Solar Energy Materials & Solar Cells, Vol. 95, pp. 1932-1939, 2011.
    [27] C.G. Granqvist, “Handbook of Inorganic Electrochromic Material”, Elsevier, Amsterdam, 1995.
    [28] J.L. Enriquez-Carrejo, M. A. Ramos, J. Mireles-Jr-Garcia, A. Hurtado-Macias, “Nano-mechanical and structural study of WO3 thin films”, Thin Solid Films, 606, 148–154, 2016.
    [29] N.M.G. Parreira, N.J.M. Carvalho, A. Cavaleiro, “Synthesis, structural and mechanical characterization of sputtered tungsten oxide coatings”, Thin Solid Films, 510, 191-196, 2006
    [30] M.M. Hasan, A.S.M.A. Haseeb, H.H. Masjuki, “Structural and mechanical properties of nanostructured tungsten oxide thin films”, Surface Engineering, 28, 10, 778-785, 2012.
    [31] M. Woydt, A. Skopp, I. Dorfel, K. Witke, “Wear engineering oxides/anti-wear oxides”, Wear, 218(1998) 84-95.
    [32] O.D. Greenwood, S.C. Moulzolf, P.J. Blau, R.J. Lad, “The influence of microstructure on tribological properties of WO3 thin films”, Wear, 232, 84-90, 1999.
    [33] E. Lugscheider, O. Knotek, K. Bobzin, S. Barwulf, “Tribological properties, phase generation and high temperature phase stability of tungsten- and vanadium-oxides deposited by reactive MSIP-PVD process for innovative lubrication applications,” Surface and Coating Technology, 133–134, 362-368, 2000.
    [34] 鄧建龍、姚潔宜、張茂男,「X光繞射分析在半導體工業上的應用」,奈米通訊,第十五卷,第四期,頁6-9,2008年。
    [35] G. Leftheriotis, P. Yianoulis, “Devlopment of electrodeposited WO3 films with modified surface morphology and improved electrochromic properties,” Solid State Ionics, 179, 2192-2197, 2008.
    [36] M. Deepa, M. Kar, S.A. Agnihotry, “Electrodeposited tungsten oxide films:annealing effects on structure and electrochromic performance,” Thin Solid Films, 468, 32-42, 2004.
    [37] M. Deepa, A.K. Srivastava, T.K. Saxena, S.A. Agnihotry, “Annealing induced microstructural evolution of electrodeposited electrochromic tungsten oxide films,” Applied Surface Science, 252, 1568-1580, 2005
    [38] P. Halin, P. Carlsson, M. Olsson, “Influence of roughness of PVD coatings on tribological performance in sliding contacts”, Surface and Coatings Technology, 201, 7, 4253-4259, 2006
    [39] G. Malik, J. Jaiswal, S. Mourya, R. Chandra, “Optical and other physical properties of hydrophobic ZnO thin films prepared by dc magnetron sputtering at room temperature”, Journal of Applied Physics, 122(14):143105, 2017

    下載圖示
    QR CODE