研究生: |
吳文凱 Wu, Wen-Kai |
---|---|
論文名稱: |
微共振腔鈣鈦礦量子點異質接面光偵測器元件之特性探討 Microcavity perovskites quantum dots heterojunction photodetector |
指導教授: |
李亞儒
Lee, Ya-Ju 李敏鴻 Lee, Min-Hung |
口試委員: |
李亞儒
Lee, Ya-Ju 李敏鴻 Lee, Min-Hung 徐旭政 Hsu, Cheng-Hsu 楊斯博 Yang, Zu-Po |
口試日期: | 2023/07/31 |
學位類別: |
碩士 Master |
系所名稱: |
光電工程研究所 Graduate Institute of Electro-Optical Engineering |
論文出版年: | 2023 |
畢業學年度: | 111 |
語文別: | 中文 |
論文頁數: | 52 |
中文關鍵詞: | 化學氣象沉積法 、熱注入法 、鈣鈦礦量子點 、布拉格反射鏡 、塔米電漿 、光偵測器 |
英文關鍵詞: | Chemical vapor deposition method, Thermal injection method, Perovskite quantum dots, Distributed bragg reflector, Tamm plasma, Photodector |
研究方法: | 實驗設計法 |
DOI URL: | http://doi.org/10.6345/NTNU202301626 |
論文種類: | 學術論文 |
相關次數: | 點閱:237 下載:23 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本篇最初使用化學氣象沉積法製作鈣鈦礦層,將鈣鈦礦作為增益介質,結合一個P型材料氧化鎳和一個N型材料氧化鋅製作成光偵測器,並加入金屬電極銀和布拉格反射鏡形成塔米電漿結構。由於本實驗利用化學氣象沉積法製作的鈣鈦礦層無法達成COMSOL模擬所需的厚度,因此改由熱注入法來製作,將鈣鈦礦層變成量子點的型態。
熱注入法製作出的鈣鈦礦量子點彼此間有許多的不連續的邊界,因此我們利用PMMA溶液覆蓋於鈣鈦礦層上方,不但填補了鈣鈦礦量子點裡晶粒間的空缺,也可以避免上方的氧化鋅與下方的氧化鎳接觸。量測方面利用COMSOL模擬了解該結構的低反射模態位置,並使用470 nm的LED作為光訊號來源使鈣鈦礦層產生光電流,最後比較有無布拉格反射鏡對鈣鈦礦光偵測器的影響。
In this experiment, the perovskite layer are used as the gain medium that make by the chemical vapor deposition method at first, and then combine with the P-type material NiO and the N-type material ZnO are made into the photodetector. The photodetector adds metal electrode and distributed bragg reflector to form the Tamm plasma structure. The perovskite layer is made by chemical vapor deposition can’t achieve the thickness required by COMSOL simulations, so we transform the perovskite layer into the form of two-dimensional quantum dots are made by thermal injection method.
The perovskite quantum dots have pretty much grain boundary between each other, so we use the PMMA solution that cover on the top of them. Not only fill the hole between the perovskite quantum dots, but avoid the NiO layer which under the perovskite and the ZnO layer which on the perovskite are contact. In the measurement, we use the COMSOL simulation to know where low- reflection mode in that structure, and use 470 nm LED as optical signal to let perovskite product the photocurrent. Finally, compare the effect of the perovskite photodector structure with and without the DBR.
J. Y. Kim, J.-W. Lee, H. S. Jung, H. Shin, and N.-G. Park, "High-efficiency perovskite solar cells," Chemical reviews, vol. 120, no. 15, pp. 7867-7918, 2020.
Y. Xu et al., "Two-photon-pumped perovskite semiconductor nanocrystal lasers," Journal of the American Chemical Society, vol. 138, no. 11, pp. 3761-3768, 2016.
K. Lin et al., "Perovskite light-emitting diodes with external quantum efficiency exceeding 20 per cent," Nature, vol. 562, no. 7726, pp. 245-248, 2018.
H. Cho et al., "Overcoming the electroluminescence efficiency limitations of perovskite light-emitting diodes," Science, vol. 350, no. 6265, pp. 1222-1225, 2015.
C. Li et al., "Enhanced photoresponse of self-powered perovskite photodetector based on ZnO nanoparticles decorated CsPbBr3 films," Solar Energy Materials and Solar Cells, vol. 172, pp. 341-346, 2017.
S. F. Leung et al., "A self‐powered and flexible organometallic halide perovskite photodetector with very high detectivity," Advanced Materials, vol. 30, no. 8, p. 1704611, 2018.
H. Lu, W. Tian, F. Cao, Y. Ma, B. Gu, and L. Li, "A self‐powered and stable all‐perovskite photodetector–solar cell nanosystem," Advanced Functional Materials, vol. 26, no. 8, pp. 1296-1302, 2016.
Q. Ma, S. Huang, X. Wen, M. A. Green, and A. W. Ho‐Baillie, "Hole transport layer free inorganic CsPbIBr2 perovskite solar cell by dual source thermal evaporation," Advanced energy materials, vol. 6, no. 7, p. 1502202, 2016.
X. Liu et al., "Boosting the efficiency of carbon-based planar CsPbBr3 perovskite solar cells by a modified multistep spin-coating technique and interface engineering," Nano energy, vol. 56, pp. 184-195, 2019.
L. Qiu et al., "Highly efficient and stable CsPbBr 3 perovskite quantum dots by encapsulation in dual-shell hollow silica spheres for WLEDs," Inorganic Chemistry Frontiers, vol. 7, no. 10, pp. 2060-2071, 2020.
Y. Zhong et al., "Large-scale thin CsPbBr3 single-crystal film grown on sapphire via chemical vapor deposition: Toward laser array application," ACS nano, vol. 14, no. 11, pp. 15605-15615, 2020.
J. Zeng et al., "Interfacial‐tunneling‐effect‐enhanced CsPbBr3 photodetectors featuring high detectivity and stability," Advanced Functional Materials, vol. 29, no. 51, p. 1904461, 2019.
D. Parobek, Y. Dong, T. Qiao, and D. H. Son, "Direct hot-injection synthesis of Mn-doped CsPbBr3 nanocrystals," Chemistry of Materials, vol. 30, no. 9, pp. 2939-2944, 2018.
D. Zhang, S. W. Eaton, Y. Yu, L. Dou, and P. Yang, "Solution-phase synthesis of cesium lead halide perovskite nanowires," Journal of the American Chemical Society, vol. 137, no. 29, pp. 9230-9233, 2015.
W. Deng, X. Jin, Y. Lv, X. Zhang, X. Zhang, and J. Jie, "2D Ruddlesden–Popper perovskite nanoplate based deep‐blue light‐emitting diodes for light communication," Advanced Functional Materials, vol. 29, no. 40, p. 1903861, 2019.
A. Kavokin, I. Shelykh, and G. Malpuech, "Lossless interface modes at the boundary between two periodic dielectric structures," Physical Review B, vol. 72, no. 23, p. 233102, 2005.
M. Kaliteevski et al., "Tamm plasmon-polaritons: Possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror," Physical Review B, vol. 76, no. 16, p. 165415, 2007.
L. Dou et al., "Solution-processed hybrid perovskite photodetectors with high detectivity," Nature communications, vol. 5, no. 1, p. 5404, 2014.
F. Li et al., "Ambipolar solution-processed hybrid perovskite phototransistors," Nature communications, vol. 6, no. 1, p. 8238, 2015.
Z. Shi et al., ". Strategy of Solution-Processed All-Inorganic Heterostructure for Humidity/Temperature-Stable Perovskite Quantum Dot Light-Emitting Diodes," ACS Nano, vol. 12, no. 2, 1462–1472, (2018).