簡易檢索 / 詳目顯示

研究生: 黃依涵
Huang, Yi-Han
論文名稱: 鋯金屬有機骨架無序到結晶化的快速轉換
Rapid Amorphous to Crystalline Transition of Zr (Ⅳ) Metal-Organic Frameworks
指導教授: 林嘉和
Lin, Chia-Her
口試委員: 陳登豪
Chen, Teng-Hao
蔡明剛
Tsai, Ming-Kang
林嘉和
Lin, Chia-Her
口試日期: 2023/05/26
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 109
中文關鍵詞: 金屬有機骨架雙溶劑置換加熱抽真空結晶化
英文關鍵詞: Metal-Organic Framework, Two Solvent Exchange, Heat under Vacuum, Crystallization
研究方法: 實驗設計法
DOI URL: http://doi.org/10.6345/NTNU202300567
論文種類: 學術論文
相關次數: 點閱:290下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文研究鋯金屬有機骨架 (Metal-Organic Framework, MOF) 從無序化到有序化快速轉換的過程,主要討論UiO-66、UiO-66-NH2和MOF-808這三個MOF。
    第一部分研究發現,鋯金屬MOF合成後的產物在尚未純化以及活化前,在溶劑中為非結晶態。通過雙溶劑置換(TOSE)和真空下加熱(HEVA)進行MOF合成的後處理,在PXRD圖可以看到晶相訊號的確有從弱到強的現象,也就是MOF從非晶相轉為晶相,且當反應時間縮短時,雙溶劑置換和真空下加熱的後處理方式也使MOF具有一定的結晶性。
    第二部分針對加熱反應方式進行探討,將烘箱改爲加熱攪拌,證明了這種一般的加熱反應方式相對烘箱加熱,可以更縮短反應時間時、容易量產化,也可使MOF具有好的結晶性,且比表面積與文獻資料沒有明顯差異。
    第三部分,文獻中雙溶劑置換的方式有簡單滴管清洗、室溫攪拌、加熱攪拌等,此處進一步討論了不同雙溶劑置換方式對MOF的影響,結果顯示室溫攪拌清洗的方式不利於缺陷的修復甚至破壞MOF的結晶性。

    This research investigates the rapid transition process of zirconium-based Metal-Organic Frameworks (MOFs) from disorder to order. The main focus of the study is on three MOFs: UiO-66, UiO-66-NH2, and MOF-808.
    Firstly, it was found that the synthesized products of metal-based MOFs were amorphous in the solvent before purification and activation. Through the study found that by using the two solvent exchange (TOSE) and heat under vacuum (HEVA), MOFs can be observed a phenomenon of crystal phase signals increasing from weak to strong by PXRD, indicating that MOFs have transformed from the amorphous phase to the crystalline phase. Moreover, when the reaction time is shortened, the post-treatment methods of dual-solvent exchange and vacuum heating also contribute to the crystallinity of MOFs.
    Secondly, the heating reaction method is investigated by replacing the oven synthesis with heating and stirring synthesis. This approach demonstrates that this method compared to oven heating, allows for shorter reaction times, facilitates mass production, and results in MOFs with good crystallinity. Additionally, there are the same with specific surface area compared to the data reported in the literature.
    Thirdly, various purification methods for two solvent exchange, such as simple pipet washed, room-temperature washed, and heated stirring, are discussed in the study. We examine the impact of different purification methods on MOFs. The results show that the results show that room temperature stirring for two solvent exchange is unlikely to the repair the defects of the MOF.

    第一章緒論 1 1-1MOF 介紹 1 1-2MOF缺陷 5 1-3鋯 MOF介紹 9 UiO-66 12 UiO-66-NH2 17 MOF-808 18 1-4MOF結晶化現象 21 1-5研究動機 24 第二章實驗與儀器 25 2-1實驗藥品 25 2-2儀器操作 27 粉末X光繞射儀 (PXRD) 27 場發式掃描電子顯微鏡 (FE-SEM) 27 比表面積及空隙分析儀 28 熱重分析儀(TGA) 28 2-3MOF合成與活化 29 UiO-66之合成 29 UiO-66-NH2之合成 29 MOF-808之合成 30 MOF純化與活化 30 第三章結果與討論 31 3-1非晶相轉晶相 31 粉末X光繞射 33 場發式掃描電子顯微鏡(FE-SEM) 38 比表面積及孔徑分析儀 41 3-2加熱迴流攪拌優化實驗 47 粉末X光繞射 48 場發式掃描電子顯微鏡(FE-SEM) 51 比表面積及孔徑分析儀 53 熱穩定性 58 3-3清洗方式與加熱的成效 61 粉末X光繞射 62 場發式掃描電子顯微鏡(FE-SEM) 71 比表面積及孔徑分析儀 75 熱穩定性 89 第四章結論與展望 94 參考文獻 96 附錄 100 Q&A 100

    1. Yaghi, O. M.; Li, H., Hydrothermal Synthesis of a Metal-Organic Framework Containing Large Rectangular Channels. Journal of the American Chemical Society 1995, 117, 10401-10402.
    2. Li, H.; Eddaoudi, M.; O'Keeffe, M.; Yaghi, O. M., Design and synthesis of an exceptionally stable and highly porous metal-organic framework. Nature 1999, 402, 276-279.
    3. Chui, S. S.-Y.; Lo, S. M.-F.; Charmant, J. P. H.; Orpen, A. G.; Williams, I. D., A Chemically Functionalizable Nanoporous Material [Cu3(TMA)2(H2O)3]n. Science 1999, 283, 1148-1150.
    4. Férey, G.; Mellot-Draznieks, C.; Serre, C.; Millange, F.; Dutour, J.; Surblé, S.; Margiolaki, I., A chromium terephthalate-based solid with unusually large pore volumes and surface area. Science 2005, 309, 2040-2.
    5. Horike, S.; Shimomura, S.; Kitagawa, S., Soft porous crystals. Nature Chemistry 2009, 1, 695-704.
    6. Horike, S.; Nagarkar, S. S.; Ogawa, T.; Kitagawa, S., A New Dimension for Coordination Polymers and Metal–Organic Frameworks: Towards Functional Glasses and Liquids. Angewandte Chemie International Edition 2020, 59, 6652-6664.
    7. Krause, S.; Hosono, N.; Kitagawa, S., Chemistry of Soft Porous Crystals: Structural Dynamics and Gas Adsorption Properties. Angewandte Chemie International Edition 2020, 59, 15325-15341.
    8. Fang, Z.; Bueken, B.; De Vos, D. E.; Fischer, R. A., Defect-Engineered Metal–Organic Frameworks. Angewandte Chemie International Edition 2015, 54, 7234-7254.
    9. Kozachuk, O.; Meilikhov, M.; Yusenko, K.; Schneemann, A.; Jee, B.; Kuttatheyil, A. V.; Bertmer, M.; Sternemann, C.; Pöppl, A.; Fischer, R. A., A Solid-Solution Approach to Mixed-Metal Metal–Organic Frameworks – Detailed Characterization of Local Structures, Defects and Breathing Behaviour of Al/V Frameworks. European Journal of Inorganic Chemistry 2013, 2013, 4546-4557.
    10. Chen, X.; Lyu, Y.; Wang, Z.; Qiao, X.; Gates, B. C.; Yang, D., Tuning Zr12O22 Node Defects as Catalytic Sites in the Metal–Organic Framework hcp UiO-66. ACS Catalysis 2020, 10, 2906-2914.
    11. Choi, K. M.; Jeon, H. J.; Kang, J. K.; Yaghi, O. M., Heterogeneity within Order in Crystals of a Porous Metal–Organic Framework. Journal of the American Chemical Society 2011, 133, 11920-11923.
    12. Schaate, A.; Roy, P.; Godt, A.; Lippke, J.; Waltz, F.; Wiebcke, M.; Behrens, P., Modulated Synthesis of Zr-Based Metal–Organic Frameworks: From Nano to Single Crystals. Chemistry – A European Journal 2011, 17, 6643-6651.
    13. Cai, G.; Jiang, H. L., A Modulator-Induced Defect-Formation Strategy to Hierarchically Porous Metal-Organic Frameworks with High Stability. Angew Chem Int Ed Engl 2017, 56, 563-567.
    14. Burtch, N. C.; Jasuja, H.; Walton, K. S., Water Stability and Adsorption in Metal–Organic Frameworks. Chemical Reviews 2014, 114, 10575-10612.
    15. Nguyen, J. G.; Cohen, S. M., Moisture-Resistant and Superhydrophobic Metal−Organic Frameworks Obtained via Postsynthetic Modification. Journal of the American Chemical Society 2010, 132, 4560-4561.
    16. Decoste, J. B.; Peterson, G. W.; Smith, M. W.; Stone, C. A.; Willis, C. R., Enhanced Stability of Cu-BTC MOF via Perfluorohexane Plasma-Enhanced Chemical Vapor Deposition. Journal of the American Chemical Society 2012, 134, 1486-1489.
    17. Yang, S. J.; Park, C. R., Preparation of Highly Moisture-Resistant Black-Colored Metal Organic Frameworks. Advanced Materials 2012, 24, 4010-4013.
    18. Yuan, S.; Feng, L.; Wang, K.; Pang, J.; Bosch, M.; Lollar, C.; Sun, Y.; Qin, J.; Yang, X.; Zhang, P.; Wang, Q.; Zou, L.; Zhang, Y.; Zhang, L.; Fang, Y.; Li, J.; Zhou, H.-C., Stable Metal–Organic Frameworks: Design, Synthesis, and Applications. Advanced Materials 2018, 30, 1704303.
    19. Cavka, J. H.; Jakobsen, S.; Olsbye, U.; Guillou, N.; Lamberti, C.; Bordiga, S.; Lillerud, K. P., A New Zirconium Inorganic Building Brick Forming Metal Organic Frameworks with Exceptional Stability. Journal of the American Chemical Society 2008, 130, 13850-13851.
    20. Yuan, S.; Qin, J.-S.; Lollar, C. T.; Zhou, H.-C., Stable Metal–Organic Frameworks with Group 4 Metals: Current Status and Trends. ACS Central Science 2018, 4, 440-450.
    21. Low, J. J.; Benin, A. I.; Jakubczak, P.; Abrahamian, J. F.; Faheem, S. A.; Willis, R. R., Virtual High Throughput Screening Confirmed Experimentally: Porous Coordination Polymer Hydration. Journal of the American Chemical Society 2009, 131, 15834-15842.
    22. Devic, T.; Serre, C., High valence 3p and transition metal based MOFs. Chemical Society Reviews 2014, 43, 6097-6115.
    23. Zhang, M.; Chen, Y.-P.; Bosch, M.; Gentle Iii, T.; Wang, K.; Feng, D.; Wang, Z. U.; Zhou, H.-C., Symmetry-Guided Synthesis of Highly Porous Metal–Organic Frameworks with Fluorite Topology. Angewandte Chemie International Edition 2014, 53, 815-818.
    24. Pearson, R. G., Hard and Soft Acids and Bases. Journal of the American Chemical Society 1963, 85, 3533-3539.
    25. Lee, D. B. N.; Roberts, M.; Bluchel, C. G.; Odell, R. A., Zirconium: Biomedical and Nephrological Applications. ASAIO Journal 2010, 56.
    26. Yao, C.-X.; Zhao, N.; Liu, J.-M.; Fang, G.-Z.; Wang, S. Ultra-Stable UiO-66 Involved Molecularly Imprinted Polymers for Specific and Sensitive Determination of Tyramine Based on Quartz Crystal Microbalance Technology Polymers, 2020.
    27. Shearer, G. C.; Chavan, S.; Ethiraj, J.; Vitillo, J. G.; Svelle, S.; Olsbye, U.; Lamberti, C.; Bordiga, S.; Lillerud, K. P., Tuned to Perfection: Ironing Out the Defects in Metal–Organic Framework UiO-66. Chemistry of Materials 2014, 26, 4068-4071.
    28. Tsuruoka, T.; Furukawa, S.; Takashima, Y.; Yoshida, K.; Isoda, S.; Kitagawa, S., Nanoporous Nanorods Fabricated by Coordination Modulation and Oriented Attachment Growth. Angewandte Chemie International Edition 2009, 48, 4739-4743.
    29. Umemura, A.; Diring, S.; Furukawa, S.; Uehara, H.; Tsuruoka, T.; Kitagawa, S., Morphology Design of Porous Coordination Polymer Crystals by Coordination Modulation. Journal of the American Chemical Society 2011, 133 , 15506-15513.
    30. Katz, M. J.; Brown, Z. J.; Colón, Y. J.; Siu, P. W.; Scheidt, K. A.; Snurr, R. Q.; Hupp, J. T.; Farha, O. K., A facile synthesis of UiO-66, UiO-67 and their derivatives. Chemical Communications 2013, 49, 9449-9451.
    31. Wu, H.; Chua, Y. S.; Krungleviciute, V.; Tyagi, M.; Chen, P.; Yildirim, T.; Zhou, W., Unusual and Highly Tunable Missing-Linker Defects in Zirconium Metal–Organic Framework UiO-66 and Their Important Effects on Gas Adsorption. Journal of the American Chemical Society 2013, 135, 10525-10532.
    32. Klet, R. C.; Liu, Y.; Wang, T. C.; Hupp, J. T.; Farha, O. K., Evaluation of Brønsted acidity and proton topology in Zr- and Hf-based metal–organic frameworks using potentiometric acid–base titration. Journal of Materials Chemistry A 2016, 4, 1479-1485.
    33. Kazemi, S.; Safarifard, V., Carbon dioxide capture in MOFs: The effect of ligand functionalization. Polyhedron 2018, 154, 236-251.
    34. Cohen, S. M., Postsynthetic Methods for the Functionalization of Metal–Organic Frameworks. Chemical Reviews 2012, 112, 970-1000.
    35. Dai, S.; Nouar, F.; Zhang, S.; Tissot, A.; Serre, C., One-Step Room-Temperature Synthesis of Metal(IV) Carboxylate Metal—Organic Frameworks. Angewandte Chemie International Edition 2021, 60, 4282-4288.
    36. Luu, C. L.; Nguyen, T. T. V.; Nguyen, T.; Hoang, T. C., Synthesis, characterization and adsorption ability of UiO-66-NH2. Advances in Natural Sciences: Nanoscience and Nanotechnology 2015, 6, 025004.
    37. Chen, Q.; He, Q.; Lv, M.; Xu, Y.; Yang, H.; Liu, X.; Wei, F., Selective adsorption of cationic dyes by UiO-66-NH2. Applied Surface Science 2015, 327, 77-85.
    38. Furukawa, H.; Gándara, F.; Zhang, Y.-B.; Jiang, J.; Queen, W. L.; Hudson, M. R.; Yaghi, O. M., Water Adsorption in Porous Metal–Organic Frameworks and Related Materials. Journal of the American Chemical Society 2014, 136, 4369-4381.
    39. Park, B. H.; Jung, Y.; Kim, S., Particle Size Control Influence on the Electrochemical Properties of Sulfur Deposited on Metal Organic Frameworks Host Electrodes. Journal of Inorganic and Organometallic Polymers and Materials 2021, 31, 1931-1938.
    40. Liu, X.; Chee, S. W.; Raj, S.; Sawczyk, M.; Král, P.; Mirsaidov, U., Three-step nucleation of metal–organic framework nanocrystals. Proceedings of the National Academy of Sciences 2021, 118.
    41. Loiseau, T.; Serre, C.; Huguenard, C.; Fink, G.; Taulelle, F.; Henry, M.; Bataille, T.; Férey, G., A Rationale for the Large Breathing of the Porous Aluminum Terephthalate (MIL-53) Upon Hydration. Chemistry – A European Journal 2004, 10, 1373-1382.
    42. Zhang, X.; Chen, Z.; Liu, X.; Hanna, S. L.; Wang, X.; Taheri-Ledari, R.; Maleki, A.; Li, P.; Farha, O. K., A historical overview of the activation and porosity of metal–organic frameworks. Chemical Society Reviews 2020, 49, 7406-7427.
    43. Lo, S.-H.; Feng, L.; Tan, K.; Huang, Z.; Yuan, S.; Wang, K.-Y.; Li, B.-H.; Liu, W.-L.; Day, G. S.; Tao, S.; Yang, C.-C.; Luo, T.-T.; Lin, C.-H.; Wang, S.-L.; Billinge, S. J. L.; Lu, K.-L.; Chabal, Y. J.; Zou, X.; Zhou, H.-C., Rapid desolvation-triggered domino lattice rearrangement in a metal–organic framework. Nature Chemistry 2020, 12, 90-97.

    下載圖示
    QR CODE