研究生: |
吳哲安 Wu, Jhe-An |
---|---|
論文名稱: |
奈米碳點結合多巴胺抑制人類降鈣素纖維之形成 Dopamine conjugated carbon dots inhibit human calcitonin fibrillation |
指導教授: |
杜玲嫻
Tu, Ling-Hsien |
學位類別: |
碩士 Master |
系所名稱: |
化學系 Department of Chemistry |
論文出版年: | 2019 |
畢業學年度: | 107 |
語文別: | 中文 |
論文頁數: | 105 |
中文關鍵詞: | 人類降鈣素 、胜肽賀爾蒙 、錯誤摺疊 、聚集 、類澱粉蛋白纖維 、奈米碳點 、抑制 、降解 、π-π作用力 |
英文關鍵詞: | Human calcitonin (hCT), Peptide hormone, Misfolding, Aggregation, Amyloid fibril, Carbon dots (CDs), Inhibition, Dissociation, π-π interaction |
DOI URL: | http://doi.org/10.6345/NTNU201900674 |
論文種類: | 學術論文 |
相關次數: | 點閱:272 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
生物相容性奈米材料的發展已成為治療和預防人類澱粉樣蛋白疾病的新趨勢。人類降鈣素是由32個胺基酸組成的胜肽,透過甲狀腺周圍的濾泡旁細胞(亦稱C細胞)分泌,在鈣磷代謝中扮演重要的角色。做為胜肽賀爾蒙,它可以用來治療骨質疏鬆症、佩吉特症等骨相關疾病。然而,人類降鈣素於水溶液中傾向形成不可逆的類澱粉蛋白纖維導致該生物利用度以及治療活性降低。鮭魚降鈣素,其有較低的聚集傾向和較高的生物活性,因而常被替代人類降鈣素作為廣泛治療劑。不幸的是,鮭魚降鈣素與人類降鈣素的序列同一性低,導致在臨床治療中會有可能發生嚴重的副作用以及免疫反應之問題。因此,能有效抑制人類降鈣素之聚集並維持其治療活性是非常的重要。水溶性奈米碳點為一小於10 nm微小尺寸的生物友好型奈米材料,其具有低毒性、高生物相容性以及官能多樣化等優點,在生物醫學應用之研究領域上成為新穎的潛力之星。此外,由文獻了解到奈米碳點可以做為抑制劑,來阻止乙型類澱粉蛋白、胰島類澱粉蛋白與胰島素聚集形成類澱粉蛋白纖維。因此,以生物相容性奈米粒子的方法來抑制類澱粉蛋白聚集為一新興的選擇。
本研究中,我們利用由下而上法的方式合成出奈米碳點,並修飾不同的官能基來改變其奈米碳點的表面性質。接著運用硫磺素-T動力學分析和穿透式電子顯微鏡來研究不同官能化的奈米碳點對人類降鈣素聚集之影響並探討這些奈米材料的應用潛力。其中值得注意的是,多巴胺-奈米碳點可以有效阻止人類降鈣素聚集以及降解其類澱粉蛋白纖維。我們推測π-π作用力可能是兩者間的關鍵作用力,不過需進一步的研究來佐證。綜合上述,我們成功地開發一種以典型零維材料的策略來抑制人類降降鈣素之聚集。
The development of biocompatible nanomaterials has become a new trend in the treatment and prevention of human amyloid diseases. Human calcitonin (hCT), a peptide consisting of 32 amino acid residues, is secreted by parafollicular cells (also called C cells) and plays a major role in calcium-phosphorus metabolism. As a peptide hormone, it can be used to treat osteoporosis and Paget's disease, but it tends to from amyloid fibrils irreversibly in aqueous solution resulting in reduce of its bioavailability and therapeutic activity. Salmon calcitonin (sCT) is the replacement of hCT as a widely therapeutic agent due to its lower propensity to aggregation and higher bioactivity. Unfortunately, sCT has low sequence identity with hCT leading to severe side effects and immune reactions in clinical therapy. Therefore, it is important to inhibit hCT aggregation and maintain its therapeutic activity. Water-soluble carbon dots (CDs), as a bio-friendly nanomaterial with a tiny size less than 10 nm, have recently been widely studied for potential biomedical applications, due to their low toxicity, high biocompatibility, and many different functionalities. In addition, CDs have been reported to be inhibitors of amyloid formation by β-amyloid (Aβ), Islet amyloid polypeptide (IAPP) and Insulin. Thus, a biocompatible nanoparticle-based approach could present a more promising alternative for inhibition of the amyloid aggregation.
In this study, we synthesize CDs through bottom-up method, conjugate different functional groups to change its surface properties and investigate the effects of different functionalized CDs on the aggregation of hCT through Thioflavin-T kinetic assay and transmission electron microscopy (TEM) to explore the potential application of these materials in pharmaceuticals. Among them, it’s worth noting that Dopamine conjugated CDs (DA-CDs) can inhibit hCT aggregation and dissociate preformed hCT amyloids. We speculate that π-π interaction would play a crucial role between hCT and DA-CDs. However, further studies are needed to clarify. In summary, we have successfully developed a typical zero-dimensional material-based strategies to prevent hCT aggregation.
[1] Chiti, F.; Dobson, C. M., Protein misfolding, amyloid formation, and human disease: a summary of progress over the last decade. Annu. Rev. Biochem. 2017, 86, 27-68.
[2] Schmitz, O.; Brock, B.; Rungby, J., Amylin agonists: a novel approach in the treatment of diabetes. Diabetes 2004, 53 Suppl 3, S233-S238.
[3] Pilkington, E. H.; Xing, Y.; Wang, B.; Kakinen, A.; Wang, M.; Davis, T. P.; Ding, F.; Ke, P. C., Effects of protein corona on IAPP amyloid aggregation, fibril remodelling, and cytotoxicity. Sci. Rep. 2017, 7 (1), 2455.
[4] Hashimoto, M.; Rockenstein, E.; Crews, L.; Masliah, E., Role of protein aggregation in mitochondrial dysfunction and neurodegeneration in Alzheimer's and Parkinson's diseases. Neuromol. Med. 2003, 4 (1-2), 21-36.
[5] Chong, F. P.; Ng, K. Y.; Koh, R. Y.; Chye, S. M., Tau proteins and tauopathies in Alzheimer's disease. Cell. Mol. Neurobiol. 2018, 38 (5), 965-980.
[6] Dayalu, P.; Albin, R. L., Huntington disease: pathogenesis and treatment. Neurol. Clin. 2015, 33 (1), 101-114.
[7] Arrasate, M.; Finkbeiner, S., Protein aggregates in Huntington's disease. Exp. Neurol. 2012, 238 (1), 1-11.
[8] Dobson, C. M., Protein folding and misfolding. Nature 2003, 426 (6968), 884-890.
[9] Tyedmers, J.; Mogk, A.; Bukau, B., Cellular strategies for controlling protein aggregation. Nat. Rev. Mol. Cell. Biol. 2010, 11 (11), 777-788.
[10] Xue, W. F.; Homans, S. W.; Radford, S. E., Systematic analysis of nucleation-dependent polymerization reveals new insights into the mechanism of amyloid self-assembly. Proc. Natl. Acad. Sci. U. S. A. 2008, 105 (26), 8926-8931.
[11] Pryor, N. E.; Moss, M. A.; Hestekin, C. N., Unraveling the early events of amyloid-beta protein (Abeta) aggregation: techniques for the determination of Abeta aggregate size. Int. J. Mol. Sci. 2012, 13 (3), 3038-3072.
[12] Ban, T.; Hamada, D.; Hasegawa, K.; Naiki, H.; Goto, Y., Direct observation of amyloid fibril growth monitored by thioflavin T fluorescence. J. Biol. Chem. 2003, 278 (19), 16462-16465.
[13] Puchtler, H.; Sweat, F., Congo red as a stain for fluorescence microscopy of amyloid. J. Histochem. Cytochem. 1965, 13 (8), 693-694.
[14] Kumar, S.; Walter, J., Phosphorylation of amyloid beta (Abeta) peptides - a trigger for formation of toxic aggregates in Alzheimer's disease. Aging (Albany NY) 2011, 3 (8), 803-812.
[15] Fowler, D. M.; Koulov, A. V.; Balch, W. E.; Kelly, J. W., Functional amyloid--from bacteria to humans. Trends. Biochem. Sci. 2007, 32 (5), 217-224.
[16] Roberts, A. N.; Leighton, B.; Todd, J. A.; Cockburn, D.; Schofield, P. N.; Sutton, R.; Holt, S.; Boyd, Y.; Day, A. J.; Foot, E. A.; et al., Molecular and functional characterization of amylin, a peptide associated with type 2 diabetes mellitus. Proc. Natl. Acad. Sci. U. S. A. 1989, 86 (24), 9662-9666.
[17] Lopez, J.; Martinez, A., Cell and molecular biology of the multifunctional peptide, adrenomedullin. Int. Rev. Cytol. 2002, 221, 1-92.
[18] Rosenfeld, M. G.; Emeson, R. B.; Yeakley, J. M.; Merillat, N.; Hedjran, F.; Lenz, J.; Delsert, C., Calcitonin gene-related peptide: a neuropeptide generated as a consequence of tissue-specific, developmentally regulated alternative RNA processing events. Ann. N. Y. Acad. Sci. 1992, 657, 1-17.
[19] Muff, R.; Born, W.; Fischer, J. A., Calcitonin, calcitonin gene-related peptide, adrenomedullin and amylin: homologous peptides, separate receptors and overlapping biological actions. Eur. J. Endocrinol. 1995, 133 (1), 17-20.
[20] Copp, D. H.; Cameron, E. C.; Cheney, B. A.; Davidson, A. G.; Henze, K. G., Evidence for calcitonin-a new hormone from the parathyroid that lowers blood calcium. Endocrinology 1962, 70, 638-649.
[21] Hirsch, P. F.; Voelkel, E. F.; Munson, P. L., Thyrocalcitonin: hypocalcemic hypophosphatemic principle of the thyroid gland. Science 1964, 146 (3642), 412-413.
[22] Pearse, A. G., The cytochemistry of the thyroid C cells and their relationship to calcitonin. Proc. R. Soc. Lond. B. Biol. Sci. 1966, 164 (996), 478-487.
[23] Pearse, A. G.; Carvalheira, A. F., Cytochemical evidence for an ultimobranchial origin of rodent thyroid C cells. Nature 1967, 214 (5091), 929-930.
[24] Zaidi, M.; Inzerillo, A. M.; Moonga, B. S.; Bevis, P. J.; Huang, C. L., Forty years of calcitonin-where are we now? a tribute to the work of Iain Macintyre, FRS. Bone 2002, 30 (5), 655-663.
[25] Hill, P. A., Bone remodelling. Br. J. Orthod. 1998, 25 (2), 101-107.
[26] Bone remodeling. https://www.unimed.com.tw/include/download.php?dl=L2hvbWUvdW5pbWVkY29tL3B1YmxpY19odG1sL2FyY2hpdmUvZG9jL2RhdGFiYXNlMDIvaXNzdWU0MS5wZGY=.
[27] Khosla, S.; Riggs, B. L., Pathophysiology of age-related bone loss and osteoporosis. Endocrinol. Metab. Clin. North. Am. 2005, 34 (4), 1015-1030, xi.
[28] Ji, M. X.; Yu, Q., Primary osteoporosis in postmenopausal women. Chronic. Dis. Transl. Med. 2015, 1 (1), 9-13.
[29] Siris, E. S., Paget's disease of bone. J. Bone. Miner. Res. 1998, 13 (7), 1061-1065.
[30] Holtrop, M. E.; Raisz, L. G.; Simmons, H. A., The effects of parathyroid hormone, colchicine, and calcitonin on the ultrastructure and the activity of osteoclasts in organ culture. J. Cell. Biol. 1974, 60 (2), 346-355.
[31] Stenbeck, G., Formation and function of the ruffled border in osteoclasts. Semin. Cell. Dev. Biol. 2002, 13 (4), 285-292.
[32] Chambers, T. J.; Magnus, C. J., Calcitonin alters behaviour of isolated osteoclasts. J. Pathol. 1982, 136 (1), 27-39.
[33] Suda, T.; Takahashi, N.; Martin, T. J., Modulation of osteoclast differentiation. Endocr. Rev. 1992, 13 (1), 66-80.
[34] Nicholson, G. C.; Moseley, J. M.; Sexton, P. M.; Mendelsohn, F. A.; Martin, T. J., Abundant calcitonin receptors in isolated rat osteoclasts. Biochemical and autoradiographic characterization. J. Clin. Invest. 1986, 78 (2), 355-360.
[35] Sexton, P. M.; Adam, W. R.; Moseley, J. M.; Martin, T. J.; Mendelsohn, F. A., Localization and characterization of renal calcitonin receptors by in vitro autoradiography. Kidney. Int. 1987, 32 (6), 862-868.
[36] Wohlwend, A.; Malmstrom, K.; Henke, H.; Murer, H.; Vassalli, J. D.; Fischer, J. A., Calcitonin and calcitonin gene-related peptide interact with the same receptor in cultured LLC-PK1 kidney cells. Biochem. Biophys. Res. Commun. 1985, 131 (2), 537-42.
[37] Pondel, M., Calcitonin and calcitonin receptors: bone and beyond. Int. J. Exp. Pathol. 2000, 81 (6), 405-422.
[38] Cochran, M.; Peacock, M.; Sachs, G.; Nordin, B. E., Renal effects of calcitonin. Br. Med. J. 1970, 1 (5689), 135-137.
[39] Swaminathan, R.; Ker, J.; Care, D., Calcitonin and intestinal calcium absorption. J. Endocrinol. 1974, 61 (1), 83-94.
[40] Masi, L.; Brandi, M. L., Calcitonin and calcitonin receptors. Clin. Cases. Miner. Bone. Metab. 2007, 4 (2), 117-122.
[41] Chait, A.; Suaudeau, C.; De Beaurepaire, R., Extensive brain mapping of calcitonin-induced anorexia. Brain. Res. Bull. 1995, 36 (5), 467-472.
[42] Rizzo, A. J.; Goltzman, D., Calcitonin receptors in the central nervous system of the rat. Endocrinology 1981, 108 (5), 1672-1677.
[43] Martin, T. J.; Findlay, D. M.; MacIntyre, I.; Eisman, J. A.; Michelangeli, V. P.; Moseley, J. M.; Partridge, N. C., Calcitonin receptors in a cloned human breast cancer cell line (MCF 7). Biochem. Biophys. Res. Commun. 1980, 96 (1), 150-156.
[44] Chesnut, C. H.; Azria, M.; Silverman, S.; Engelhardt, M.; Olson, M.; Mindeholm, L., Salmon calcitonin: a review of current and future therapeutic indications. Osteoporosis Int. 2007, 19 (4), 479-491.
[45] Feletti, C.; Bonomini, V., Effect of calcitonin on bone lesions in chronic dialysis patients. Nephron 1979, 24 (2), 85-88.
[46] Yamamoto, Y.; Nakamuta, H.; Koida, M.; Seyler, J. K.; Orlowski, R. C., Calcitonin-induced anorexia in rats: A structure-activity study by intraventricular injections. Jpn. J. Pharmacol. 1982, 32 (6), 1013-1017.
[47] Cudd, A.; Arvinte, T.; Gaines Das, R. E.; Chinni, C.; MacIntyre, I., Enhanced potency of human calcitonin when fibrillation is avoided. J. Pharm. Sci. 1995, 84 (6), 717-719.
[48] Schellekens, H., Bioequivalence and the immunogenicity of biopharmaceuticals. Nat. Rev. Drug. Discov. 2002, 1 (6), 457-462.
[49] Cleland, J. L.; Powell, M. F.; Shire, S. J., The development of stable protein formulations: a close look at protein aggregation, deamidation, and oxidation. Crit. Rev. Ther. Drug. Carrier. Syst. 1993, 10 (4), 307-377.
[50] Arvinte, T.; Cudd, A.; Drake, A. F., The structure and mechanism of formation of human calcitonin fibrils. J. Biol. Chem. 1993, 268 (9), 6415-6422.
[51] Reches, M.; Porat, Y.; Gazit, E., Amyloid fibril formation by pentapeptide and tetrapeptide fragments of human calcitonin. J. Biol. Chem. 2002, 277 (38), 35475-35480.
[52] Kamihira, M.; Naito, A.; Tuzi, S.; Nosaka, A. Y.; Saito, H., Conformational transitions and fibrillation mechanism of human calcitonin as studied by high-resolution solid-state 13C NMR. Protein Sci. 2000, 9 (5), 867-877.
[53] Kamihira, M.; Oshiro, Y.; Tuzi, S.; Nosaka, A. Y.; Saitô, H.; Naito, A., Effect of electrostatic interaction on fibril formation of human calcitonin as studied by high resolution solid state 13C NMR. J. Biol. Chem. 2003, 278 (5), 2859-2865.
[54] Itoh-Watanabe, H.; Kamihira-Ishijima, M.; Javkhlantugs, N.; Inoue, R.; Itoh, Y.; Endo, H.; Tuzi, S.; Saitô, H.; Ueda, K.; Naito, A., Role of aromatic residues in amyloid fibril formation of human calcitonin by solid-state 13C NMR and molecular dynamics simulation. Phys. Chem. Chem. Phys. 2013, 15 (23), 8890-8901.
[55] Guo, C.; Ma, L.; Zhao, Y.; Peng, A.; Cheng, B.; Zhou, Q.; Zheng, L.; Huang, K., Inhibitory effects of magnolol and honokiol on human calcitonin aggregation. Sci. Rep. 2015, 5 (1), 13556.
[56] Baker, S. N.; Baker, G. A., Luminescent carbon nanodots: emergent nanolights. Angew. Chem. Int. Ed. Engl. 2010, 49 (38), 6726-6744.
[57] Zhang, J.; Yu, S. H., Carbon dots: large-scale synthesis, sensing and bioimaging. Mater. Today 2016, 19 (7), 382-393.
[58] Xu, X.; Ray, R.; Gu, Y.; Ploehn, H. J.; Gearheart, L.; Raker, K.; Scrivens, W. A., Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments. J. Am. Chem. Soc. 2004, 126 (40), 12736-12737.
[59] Tuerhong, M.; Xu, Y.; Yin, X. B., Review on carbon dots and their applications. Chinese J. Anal. Chem. 2017, 45 (1), 139-150.
[60] Surana, K.; Singh, P. K.; Rhee, H. W.; Bhattacharya, B., Synthesis, characterization and application of CdSe quantum dots. J. Ind. Eng. Chem. 2014, 20 (6), 4188-4193.
[61] Keuleyan, S.; Lhuillier, E.; Guyot-Sionnest, P., Synthesis of colloidal HgTe quantum dots for narrow mid-IR emission and detection. J. Am. Chem. Soc. 2011, 133 (41), 16422-16424.
[62] Namdari, P.; Negahdari, B.; Eatemadi, A., Synthesis, properties and biomedical applications of carbon-based quantum dots: An updated review. Biomed. Pharmacother. 2017, 87, 209-222.
[63] Kailasa, S. K.; Mehta, V. N.; Hasan, N.; Wu, H.F., Applications of carbon dots in biosensing and cellular imaging. Nanobiomaterials in Medical Imaging, 2016, 339-364.
[64] Yarur, F.; Macairan, J.-R.; Naccache, R., Ratiometric detection of heavy metal ions using fluorescent carbon dots. Environ. Sci. Nano 2019, 6 (4), 1121-1130.
[65] Li, Y.; Zhang, Z.-Y.; Yang, H.-F.; Shao, G.; Gan, F., Highly selective fluorescent carbon dots probe for mercury(ii) based on thymine-mercury(ii)-thymine structure. RSC Adv. 2018, 8 (8), 3982-3988.
[66] Essner, J. B.; Baker, G. A., The emerging roles of carbon dots in solar photovoltaics: a critical review. Environ. Sci. Nano 2017, 4 (6), 1216-1263.
[67] Zhang, Q.; Zhang, G.; Sun, X.; Yin, K.; Li, H., Improving the power conversion efficiency of carbon quantum dot-sensitized solar cells by growing the dots on a TiO2 photoanode in situ. Nanomaterials (Basel) 2017, 7 (6), 130.
[68] Wang, H. J.; He, X.; Luo, T. Y.; Zhang, J.; Liu, Y. H.; Yu, X. Q., Amphiphilic carbon dots as versatile vectors for nucleic acid and drug delivery. Nanoscale 2017, 9 (18), 5935-5947.
[69] Hettiarachchi, S. D.; Graham, R. M.; Mintz, K. J.; Zhou, Y.; Vanni, S.; Peng, Z.; Leblanc, R. M., Triple conjugated carbon dots as a nano-drug delivery model for glioblastoma brain tumors. Nanoscale 2019, 11 (13), 6192-6205.
[70] Pirsaheb, M.; Moradi, S.; Shahlaei, M.; Farhadian, N., Application of carbon dots as efficient catalyst for the green oxidation of phenol: kinetic study of the degradation and optimization using response surface methodology. J. Hazard. Mater. 2018, 353, 444-453.
[71] Hou, J.; Li, H.; Tang, Y.; Sun, J.; Fu, H.; Qu, X.; Xu, Z.; Yin, D.; Zheng, S., Supported N-doped carbon quantum dots as the highly effective peroxydisulfate catalysts for bisphenol F degradation. Appl. Catal. B: Environ. 2018, 238, 225-235.
[72] Zuo, P.; Lu, X.; Sun, Z.; Guo, Y.; He, H. J. M. A., A review on syntheses, properties, characterization and bioanalytical applications of fluorescent carbon dots. Microchim. Acta 2016, 183 (2), 519-542.
[73] Thongpool, V.; Asanithi, P.; Limsuwan, P., Synthesis of carbon particles using laser ablation in ethanol. Procedia Eng. 2012, 32, 1054-1060.
[74] Deng, J.; Lu, Q.; Mi, N.; Li, H.; Liu, M.; Xu, M.; Tan, L.; Xie, Q.; Zhang, Y.; Yao, S., Electrochemical synthesis of carbon nanodots directly from alcohols. Chem. Eur. J. 2014, 20 (17), 4993-4999.
[75] Li, C.; Liu, W.; Ren, Y.; Sun, X.; Pan, W.; Wang, J., The selectivity of the carboxylate groups terminated carbon dots switched by buffer solutions for the detection of multi-metal ions. Sens. actuators. B Chem. 2017, 240, 941-948.
[76] Guo, C. X.; Zhao, D.; Zhao, Q.; Wang, P.; Lu, X., Na+-functionalized carbon quantum dots: a new draw solute in forward osmosis for seawater desalination. Chem. Commun. 2014, 50 (55), 7318-7321.
[77] Fong, J. F. Y.; Chin, S. F.; Ng, S. M., A unique "turn-on" fluorescence signalling strategy for highly specific detection of ascorbic acid using carbon dots as sensing probe. Biosens. Bioelectron. 2016, 85, 844-852.
[78] Lu, X.; Zhang, Z.; Xia, Q.; Hou, M.; Yan, C.; Chen, Z.; Xu, Y.; Liu, R., Glucose functionalized carbon quantum dot containing organic radical for optical/MR dual-modality bioimaging. Mater. Sci. Eng. C 2018, 82, 190-196.
[79] Liu, H.; He, Z.; Jiang, L. P.; Zhu, J. J., Microwave-assisted synthesis of wavelength-tunable photoluminescent carbon nanodots and their potential applications. ACS Appl. Mater. Inter. 2015, 7 (8), 4913-4920.
[80] Du, W.; Xu, X.; Hao, H.; Liu, R.; Zhang, D.; Gao, F.; Lu, Q., Green synthesis of fluorescent carbon quantum dots and carbon spheres from pericarp. Sci. China Chem. 2015, 58 (5), 863-870.
[81] Wang, L.; Zhu, S.; Lu, T.; Zhang, G.; Xu, J.; Song, Y.; Li, Y.; Wang, L.; Yang, B.; Li, F., The effects of a series of carbon dots on fibrillation and cytotoxicity of human islet amyloid polypeptide. J. Mater. Chem. B 2016, 4 (28), 4913-4921.
[82] Chung, Y. J.; Kim, K.; Lee, B. I.; Park, C. B., Carbon nanodot-sensitized modulation of Alzheimer's beta-amyloid self-assembly, disassembly, and toxicity. Small 2017, 13 (34), 1700983.
[83] Prikhozhdenko, E. S.; Bratashov, D. N.; Mitrofanova, A. N.; Sapelkin, A. V.; Yashchenok, A. M.; Sukhorukov, G. B.; Goryacheva, I. Y., Solvothermal synthesis of hydrophobic carbon dots in reversed micelles. J. Nanopart. Res. 2018, 20 (9), 234.
[84] Qiao, Z.-A.; Wang, Y.; Gao, Y.; Li, H.; Dai, T.; Liu, Y.; Huo, Q., Commercially activated carbon as the source for producing multicolor photoluminescent carbon dots by chemical oxidation. Chem. Commun. 2010, 46 (46), 8812-8814.
[85] Bhunia, S. K.; Saha, A.; Maity, A. R.; Ray, S. C.; Jana, N. R., Carbon nanoparticle-based fluorescent bioimaging probes. Sci. Rep. 2013, 3 (1), 1473.
[86] Han, X.; Jing, Z.; Wu, W.; Zou, B.; Peng, Z.; Ren, P.; Wikramanayake, A.; Lu, Z.; Leblanc, R. M., Biocompatible and blood–brain barrier permeable carbon dots for inhibition of Aβ fibrillation and toxicity, and BACE1 activity. Nanoscale 2017, 9 (35), 12862-12866.
[87] Yang, Q. Q.; Jin, J. C.; Xu, Z. Q.; Zhang, J. Q.; Wang, B. B.; Jiang, F. L.; Liu, Y., Active site-targeted carbon dots for the inhibition of human insulin fibrillation. J. Mater. Chem. B 2017, 5 (10), 2010-2018.
[88] Guo, C. X.; Zhao, D.; Zhao, Q.; Wang, P.; Lu, X., Na+-functionalized carbon quantum dots: a new draw solute in forward osmosis for seawater desalination. Chem. Commun. (Camb) 2014, 50 (55), 7318-7321.
[89] Chai, L.; Zhou, J.; Feng, H.; Tang, C.; Huang, Y.; Qian, Z., Functionalized carbon quantum dots with dopamine for tyrosinase activity monitoring and inhibitor screening: in vitro and intracellular investigation. ACS Appl. Mater. Inter. 2015, 7 (42), 23564-23574.
[90] Hosseinzadeh, G.; Maghari, A.; Farniya, S. M. F.; Keihan, A. H.; Moosavi-Movahedi, A. A., Interaction of insulin with colloidal ZnS quantum dots functionalized by various surface capping agents. Mater. Sci. Eng. C Mater. Biol. Appl. 2017, 77, 836-845.
[91] Zeta-potential & Particle size Analyzer ELSZ-2000. http://www.otsukael.com/product/detail/productid/1/category1id/2/category2id/1/category3id/29.
[92] Stojilovic, N., Why can’t we see hydrogen in X-ray photoelectron spectroscopy? J. Chem. Educ. 2012, 89 (10), 1331-1332.
[93] Mochizuki, M.; Tsuda, S.; Tanimura, K.; Nishiuchi, Y., Regioselective formation of multiple disulfide bonds with the aid of postsynthetic S-tritylation. Org. Lett. 2015, 17 (9), 2202-2205.
[94] Biancalana, M.; Koide, S., Molecular mechanism of Thioflavin-T binding to amyloid fibrils. Biochim. Biophys. Acta 2010, 1804 (7), 1405-1412.
[95] E, S.; Shi, L.; Guo, Z., Tribological properties of self-assembled gold nanoparticles on silicon with polydopamine as the adhesion layer. Appl. Surf. Sci. 2014, 292, 750-755.
[96] Chan, W., Investigation of the chemical structure and formation mechanism of polydopamine from self-assembly of dopamine by liquid chromatography/mass spectrometry coupled with isotope-labelling techniques. Rapid Commun. Mass Spectrom. 2019, 33 (5), 429-436.
[97] Sciacca, M. F.; Kotler, S. A.; Brender, J. R.; Chen, J.; Lee, D. K.; Ramamoorthy, A., Two-step mechanism of membrane disruption by Abeta through membrane fragmentation and pore formation. Biophys. J. 2012, 103 (4), 702-710.
[98] Sciacca, M. F.; Brender, J. R.; Lee, D. K.; Ramamoorthy, A., Phosphatidylethanolamine enhances amyloid fiber-dependent membrane fragmentation. Biochemistry 2012, 51 (39), 7676-7684.
[99] Shtainfeld, A.; Sheynis, T.; Jelinek, R., Specific mutations alter fibrillation kinetics, fiber morphologies, and membrane interactions of pentapeptides derived from human calcitonin. Biochemistry 2010, 49 (25), 5299-5307.