簡易檢索 / 詳目顯示

研究生: 張齊
Chang, Chi
論文名稱: 拓樸量子位元在量子能量傳輸的應用
Optimization of Quantum Energy Teleportation for Topological Qubits
指導教授: 林豐利
Lin, Feng-Li
學位類別: 碩士
Master
系所名稱: 物理學系
Department of Physics
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 45
中文關鍵詞: 拓樸量子位元量子能量傳輸馬里亞納費米子
英文關鍵詞: Topological qubits, Quantum energy teleportation, Majorana fermion
DOI URL: https://doi.org/10.6345/NTNU202204055
論文種類: 學術論文
相關次數: 點閱:167下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 無中文摘要

    Quantum energy teleportation is a protocol that the energy can be teleported by local operations and classical communication. The Hotta's two-qubit model of QET is reviewed. The topological ordered system is a good system for quantum information and quantum computation because of its robustness.
    The topological qubit is one kind of topological ordered system. Each topological qubit is composed with two Majorana modes of a 1D Kitaev's chain. The Hotta's qubit model can be expressed in terms of Majorana modes. For the viable cases of QET, they follow three conditions: (1) the measurement and operation consists of odd or even number Majorana operators simultaneously. (2) the energy variation of the interaction term with respect to the post-operation state is negative. (3) the measurement and operation have to act on the different subsystems. The efficiency of QET in topological qubits can be higher than the two-qubit model.

    Acknowledgement i Abstract ii 1 Introduction 1 1.1 Quantum Entanglement 1 1.2 Quantum Measurement and LOCC 2 1.3 Quantum Teleportation 4 1.4 Quantum Energy Teleportation 6 1.5 Majorana modes 9 2 QET in The Two-Qubit Model 11 3 Majorana modes in 1D superconductor 17 4 QET with Topological Qubits 22 4.1 Hotta's qubit model of QET in terms of Majorana modes 23 4.2 The conditions of viable QET cases 24 4.3 The viable cases of QET 26 4.4 The nonviable cases of QET 36 5 Conclusion 41

    [1] A. Einstein, B. Podolsky, and N. Rosen. Can quantum-mechanical description of physical reality be considered complete? Phys. Rev., 47:777-780, May 1935.
    [2] John Bell. "on the einstein podolsky rosen paradox" (pdf). Physics 1,3:195200, 1964.
    [3] Alain Aspect, Philippe Grangier, and Gerard Roger. Experimental realization of einstein-podolsky-rosen-bohm Gedankenexperiment : A new violation of bell's inequalities. Phys. Rev. Lett., 49:91-94, Jul 1982.
    [4] Lon van Hove. Von neumann's contributions to quantum theory. Bull. Amer. Math. Soc., 64:95{99, 05 1958.
    [5] C. E. Shannon. A mathematical theory of communication. SIGMOBILE Mob. Comput. Commun. Rev., 5(1):3{55, jan 2001.
    [6] William K. Wootters. Entanglement of formation and concurrence.Quantum Info. Comput., 1(1):27{44, January 2001.
    [7] Charles H. Bennett, Gilles Brassard, Claude Crepeau, Richard Jozsa, Asher Peres, and William K. Wootters. Teleporting an unknown quantum state via dual classical and einstein-podolsky-rosen channels. Phys.Rev. Lett., 70:1895-1899, Mar 1993.
    [8] Masahiro Hotta. Quantum measurement information as a key to energy extraction from local vacuums. Phys. Rev. D, 78:045006, Aug 2008.
    [9] Michael A. Nielsen and Isaac L. Chuang. Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, New York, NY, USA, 10th edition, 2011.
    [10] Asher Peres and William K. Wootters. Optimal detection of quantum information. Phys. Rev. Lett., 66:1119-1122, Mar 1991.
    [11] D. Boschi, S. Branca, F. De Martini, L. Hardy, and S. Popescu. Experimental realization of teleporting an unknown pure quantum state via dual classical and einstein-podolsky-rosen channels. Phys. Rev. Lett.,
    80:1121-1125, Feb 1998.
    [12] Xiao-Song Ma, Thomas Herbst, Thomas Scheidl, Daqing Wang, Sebastian Kropatschek, William Naylor, Bernhard Wittmann, Alexandra Mech, Johannes Koer, Elena Anisimova, Vadim Makarov, Thomas Jennewein, Rupert Ursin, and Anton Zeilinger. Quantum teleportation over 143 kilometres using active feed-forward. Nature, 489(7415):269-273,
    Sep 2012.
    [13] Shuntaro Takeda, Takahiro Mizuta, Maria Fuwa, Peter van Loock, and Akira Furusawa. Deterministic quantum teleportation of photonic quantum bits by a hybrid technique. Nature, 500(7462):315-318, Aug 2013.
    Letter.
    [14] Masahiro Hotta. Quantum energy teleportation: An introductory review. 2011.
    [15] Henning Bostelmann and Daniela Cadamuro. Negative energy densities in integrable quantum eld theories at one-particle level. Phys. Rev. D, 93:065001, Mar 2016.
    [16] W. Pusz and S. L.Woronowicz. Passive states and kms states for general
    quantum systems. Comm. Math. Phys., 58(3):273-290, 1978.
    [17] Masahiro Hotta. Ground-state-entanglement bound for quantum energy teleportation of general spin-chain models. Phys. Rev. A, 87:032313, Mar 2013.
    [18] Masahiro Hotta. Energy-entanglement relation for quantum energy teleportation. Phys. Lett., A374:3416{3421, 2010.
    [19] Jose Trevison and Masahiro Hotta. Quantum energy teleportation across a three-spin ising chain in a gibbs state. Journal of Physics A: Mathematical and Theoretical, 48(17):175302, 2015.
    [20] Masahiro Hotta. Quantum energy teleportation with trapped ions. Phys.Rev. A, 80:042323, Oct 2009.
    [21] Masahiro Hotta. Controlled hawking process by quantum energy teleportation. Phys. Rev. D, 81:044025, Feb 2010.
    [22] Masahiro Hotta, Jiro Matsumoto, and Go Yusa. Quantum energy teleportation without a limit of distance. Phys. Rev. A, 89:012311, Jan 2014.
    [23] Go Yusa, Wataru Izumida, and Masahiro Hotta. Quantum energy teleportation in a quantum hall system. Phys. Rev. A, 84:032336, Sep 2011.
    [24] Luciano Majorana, Ettore; Maiani. "a symmetric theory of electrons and positrons". In Bassani, Giuseppe Franco. Ettore Majorana Scienti c Papers., 93:201-33, Mar 2006.
    [25] V. Mourik, K. Zuo, S. M. Frolov, S. R. Plissard, E. P. A. M.Bakkers, and L. P. Kouwenhoven. Signatures of majorana fermions in hybrid superconductor-semiconductor nanowire devices. Science, 336(6084):1003-1007, 2012.
    [26] Frank Wilczek. Majorana returns. Nature Physics, 5:614-618, 2009.
    [27] J. R. Schrie er. Theory of Superconductivity. W. A. Benjamin.
    [28] A. Abrikosov. Sov. Phys, 5:1174-1182, 1957.
    [29] R. Jackiw and P. Rossi. Zero Modes of the Vortex - Fermion System. Nucl. Phys., B190:681-691, 1981.
    [30] N. Read and Dmitry Green. Paired states of fermions in two dimensions with breaking of parity and time-reversal symmetries and the fractional quantum hall e ect. Phys. Rev. B, 61:10267{10297, Apr 2000.
    [31] Liang Fu and C. L. Kane. Superconducting proximity e ect and majorana fermions at the surface of a topological insulator. Phys. Rev. Lett., 100:096407, Mar 2008.
    [32] Pouyan Ghaemi and Frank Wilczek. Near-zero modes in superconducting graphene. Physica Scripta, 2012(T146):014019, 2012.
    [33] G. Moore and N. Read. Nonabelions in the fractional quantum hall eff ect. Nuclear Physics B, 360:362{396, August 1991.
    [34] A. Kitaev and C. Laumann. Topological phases and quantum computation. 904.
    [35] Sankar Das Sarma, Michael Freedman, and Chetan Nayak. Topologically protected qubits from a possible non-abelian fractional quantum hall state. Phys. Rev. Lett., 94:166802, Apr 2005.
    [36] Shih-Hao Ho, Sung-Po Chao, Chung-Hsien Chou, and Feng-Li Lin. Decoherence patterns of topological qubits from majorana modes. New Journal of Physics, 16(11):113062, 2014.

    無法下載圖示 本全文未授權公開
    QR CODE