簡易檢索 / 詳目顯示

研究生: 黃昱綸
Huang, Yu-Lun
論文名稱: 通電作用對氧化鋅薄膜微結構之影響
Effect of applying electrical curent on the microsture of ZnO thin films by sol-gel process
指導教授: 程金保
Cheng, Chin-Pao
學位類別: 碩士
Master
系所名稱: 工業教育學系
Department of Industrial Education
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 85
中文關鍵詞: 溶膠凝膠法氧化鋅薄膜電場效應電遷移
英文關鍵詞: sol-gel method, ZnO thin films, electric field effect, Electromigration effect
論文種類: 學術論文
相關次數: 點閱:196下載:9
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文中,使用溶膠凝膠法中之旋轉塗佈法製備氧化鋅非晶質薄膜材料,並鍍在鋁電極與玻璃基板上,分別就三種不同觀點探討 (1) 常溫下利用電場效應對氧化鋅薄膜改質之探討,(2) 不同退火溫度下施加電場對氧化鋅薄膜之影響,以及(3)常溫下金屬電極通電後對氧化鋅薄膜之影響。再分別藉由改變以上三種不同方式之研究參數,如電壓大小、正負偏壓、時間等條件,對製備完成的氧化鋅薄膜試片進行SEM、XRD、XPS等驗證方式探討。經實驗結果之比對,隨著實驗時間的增加,對氧化鋅薄膜施加不同電壓以及電場的控制,可有效的改變氧化鋅薄膜退火後之微結構形貌與特性。除此之外,金屬層因焦耳熱及電遷移作用下產生發熱的現象,導致氧化鋅薄膜表面微結構與結晶產生變化。

    In this paper, we try to obtain crystalline texture within ZnO under room temperature with different electrical field and current. We fabricate ZnO thin film on glass substrate on which aluminum electrodes are evaporated by Sol-Gel spin coating technique at first. Then all specimens are divided into three sets which are respectively treated with different experimental design method for following observation (1) How to improve the quality of ZnO thin films by applying electrical field on them under room temperature. (2) The comparison of applying electrical field over ZnO thin films under different annealing temperatures (3) the effect of electrode which conducts electricity to ZnO thin films. Finally, specimens with different experimental parameters, such as voltages, forward or negative bias and time of applying voltage are investigated with SEM(Scanning Electron Microscope), XRD and XPS. After analyzing experimental results, we know that applying electrical field of different magnitudes over ZnO thin films apparently changes the micro-structure and characteristics of ZnO thin films after annealing as experimental time increases. Besides, that metal layer heats up due to electromigration changes the micro-structure and crystalline texture of ZnO thin films surface.

    目錄 中文摘要 I Abstract II 致謝 III 目錄 V 表目錄 VIII 圖目錄 IX 第一章 緒論 1 1-1 前言 1 1-2 研究動機與目的 3 第二章 理論與文獻探討 5 2-1 溶膠凝膠法(sol-gel method) 5 2-1-1 溶膠凝膠法之原理 9 2-1-2 起始原料的選擇 10 2-1-3 覆膜方式 12 2-1-4 溶膠凝膠法之主要影響參數 15 2-1-5 低溫焦化熱處理 16 2-1-6 高溫結晶熱處理 17 2-2 氧化鋅薄膜之結晶特性 18 2-3 電遷移理論 21 2-3-1 電遷移原理 21 2-3-2 熱焦耳效應 24 2-4 文獻中有關材料施加電場與通電熱處理的相關研究 24 第三章 實驗方法與步驟 28 3-1 實驗藥品與儀器設備 28 3-1-1 實驗儀器 28 3-1-2 實驗藥品與耗材 29 3-2 實驗前置作業 30 3-2-1 前驅物配製 30 3-2-2 基材清洗流程 30 3-2-3 電極製作 32 3-2-4 旋轉塗佈法(spin coating)覆膜 33 3-3 實驗流程規劃 35 3-3-1 常溫下利用電場效應對氧化鋅薄膜改質之影響 38 3-3-2 不同退火溫度下施加電場對氧化鋅薄膜之影響 38 3-3-3 常溫下金屬電極通電後對氧化鋅薄膜之影響 39 3-4 薄膜特性分析 43 3-4-1 掃描式電子顯微鏡觀察 (Scanning Electron Microscope, SEM) 43 3-4-2 X光繞射分析儀 (X-ray Diffraction, XRD) 43 3-4-3 X光電子能譜儀 (X-ray Photoelectron Spectroscope, XPS) 44 3-4-4 四點探針 ( Four-point Probe) 45 第四章 結果與討論 49 4-1 常溫下利用電場效應對氧化鋅薄膜改質之探討 49 4-1-1 常溫電場效應之表面微結構分析 50 4-1-2 常溫下施加電場之XRD分析 59 4-2 不同退火溫度下施加電場對氧化鋅薄膜之影響 60 4-2-1 加熱同時施加電場之表面微結構圖 60 4-2-2 加熱同時施加電場之XRD分析 66 4-3 常溫下金屬電極通電後對氧化鋅薄膜之影響 69 4-3-1 常溫下金屬電極通電後之表面微結構分析 69 4-3-2 常溫下金屬電極通電後之XRD分析 73 4-3-3 X光電子能譜儀(XPS)分析 74 第五章 結論 76 5-1 結論 76 5-2 未來展望 77 第六章 參考文獻 78

    [1] C. Lee, K. Lim, and J. Song, “Highly textured ZnO thin fims doped with indium prepared by the pyrosol method”, Solar Energy Materials and Solar Cells 43 (1996), pp. 37-45.
    [2] D. S. Ginley and C. Bright, “Transparent conducting oxides”, MRS Bulletin 25 (2000), pp. 15-18.
    [3] T. Minami, “New n-type transparent conducting oxides”, MRS Bulletin 25 (2000), pp. 38-44.
    [4] 陳三元,“強介電陶瓷薄膜的製程與應用”,工業材料125期,民86年5月,pp. 86-89。
    [5] Z. Fu, B. Lin and J. Zu, “Photoluminescence and structure of ZnO films deposited on Si substrates by metal-organic chemical vapor deposition”, Thin Solid Films 402 (2002), pp. 302-306.
    [6] H. S. Randhawa, M.D. Matthews and R. F. Bunsham, “SnO2 films prepared by activated reactive evaporation”, Thin Solid Films 83 (1981), pp. 267-271.
    [7] J. H. Lee and B. O. Park, “Characteristics of Al-doped ZnO thin films obtained by ultrasonic spray pyrolysis: effects of Al doping and an annealing treatment”, Materials Science and Engineering B 106 (2004), pp. 242-245.
    [8] F. K. Shana, G. X. Liu, W. J. Lee, G. H. Lee, I. S. Kim, B.C. Shin and Y. C. Kim, “Transparent conductive ZnO thin films on glass substrates deposited by pulsed laser deposition”, Journal of Crystal Growth 277 (2005), pp. 284-292.
    [9] H. Agura, A. Suzuki, T. Matsushita, T. Aoki and M. Okuda, “Low resistivity transparent conducting conducting Al-doped ZnO films prepared by pulsed laser deposition”, Thin Solid Films 445 (2003), pp. 263-267.
    [10] J. Lee, Z. Li, M. Hodgson, A. Asadov and W. Gao, “Structural, electrical and transparent properties of ZnO thin films prepared by magnetron sputtering”, Current Applied Physics 4 (2004), pp. 398-401.
    [11] T. Schuler and M. A. Aegerter, “Optical, electrical and structural properties of sol-gel ZnO: Al coatings”, Thin Solid Films 351 (1999), pp. 125-131.
    [12] S. B. Majumber, M. Jain, P. S. Dobal and R. S. Katiyat, “Investigations on solution derived aluminium doped zinc oxide thin films”, Materials Science and Engineering B 103 (2003), pp. 16-25.
    [13] G.G. Valle, P. Hammer, S.H. Pulcinelli and C.V. Santilli, “Transparent and conductive ZnO:Al thin films prepared by sol-gel dip-coating”,Journal of the European Ceramic Society 24 (2004), pp. 1009-1013.
    [14] M. Ohyama, H. Kouzuka and T. Yoko, “Sol-gel preparation of ZnO films with extremely preferred orientation along (002) plane from zinc acetate solution”, Thin Solid Films 306 (1997), pp. 78-85.
    [15] L. Mei, K. Liang and H. Wang, “N-doping TiO2 thin film prepared by heat treatment in electric field”, Catalysis Communications 8 (2007), pp. 1187-1190.
    [16] C. S. He, Y.D. Zhang, Y. N. Wang, X. Zhao, L. Zuo and C. Esling, “Texture and microstructure development in cold-rolled interstitial free (IF) steel sheet during electric field annealing”, Scripta Materialia 48 (2003), pp. 737-742
    [17] 盧彥良,“不同成分鋯鈦酸鉛薄膜電場退火對微結構與電性之影響”,清華大學材料科學工程研究所碩士論文,民國97年6月。
    [18] C. J. Brinker and G. Scherer, “The physics and chemistry of sol-gel processing”, Sol-Gel Science, Academic Press, New York, 1990, p. 912.
    [19] 蔣孝撤,“溶膠凝膠製作與應用專輯”,化工,第4卷第5期,民88年,pp. 12-15。
    [20] 董建岳,“奈米孔洞無機材料之製備”,化工技術與商情42期,民92年3月,pp. 33-36。
    [21] 徐如人、龐文琴,“無機合成與製備化學”,五南出版(2004)。
    [22] 陳慧英、黃定加、朱秦億,“溶膠凝膠法在製備薄膜上之應用”,化工技術,第七卷第十一期,1999年11月,pp. 152-166。
    [23] A. J. Burggraaf and L. Cot, “Fundamentals of inorganic membrane science and technology”, Elsevier Science B (1996), p. 324.
    [24] V. Musat, B. Teixeira, E. Fortunato, R. C. C. Monteriro, and P. Vilarinho, “Al-doped ZnO thin films by sol-gel method”, Surface and Coatings Technology 180-181 (2004), pp. 659-662.
    [25] 吳炳佑、蔣孝撤,“溶膠凝膠製備薄膜及其應用”,材料科學28期,(1996), pp. 169-181。
    [26] G. G. Valle, P. Hammer, S. H. Pulcinelli and C. V. Santilli, “Transparent and conductive ZnO : Al thin films prepared sol-gel dip-coating”,Journal of the European Ceramic Society 24 (2004), pp. 1009-1019.
    [27] Y. Kokubun, H. Kimura and S. Nakagomi, “Preparation of ZnO Thin Films on Sapphire Substrates by Sol-Gel Method”, Japanese Journal of applied physics 42 (2003), pp. 904-906.
    [28] Y. M. Sun, W. F. Huang and C. C. Chang, “Spray- coated and solution-cast ethylcellulose pseudolatex membranes”, Journal of Membrane Science 157 (1999), pp. 159-170.
    [29] J.H. Lee, K. H. Ko and B. O. Park, “Electrical and optical properties of ZnO transparent conducting films by the sol-gel method”, Journal of Crystal Growth 247 (2003), pp. 119-125.
    [30] J. I. Pankove, “Optical Progress in Semiconductors”, Courier Dover Publications, New York, 1975.
    [31] F. D. Paraguay, J. Morales, W. L. Estrada, E. Andrade and M. M. Yoshida, “Influence of Al, In, Cu, Fe and Sn dopants in the microstructure of zinc oxide thin films obtained by spray pyrolysis”, Thin Solid Films 366 (2000), pp. 16-27.
    [32] R. Wang, L. H. King and A. W. Sleight, “Highly conducting transparent thin films based on zinc oxide”, Materials Research Society 11 (1996), pp. 1659-1664.
    [33] D. Bao, H. Gu and A. Kuang, “Sol-gel-derived c-axis oriented ZnO thin films”, Thin solid films 312 (1998), pp. 37-39.
    [34] D. G. Bail and S. M. Cho, “Application of sol-gel derived films for ZnO/n-Si junction solar cells”, Thin Solid Films 354 (1999), pp. 227-231.
    [35] H. W. Ryu and B. S. Park, “ZnO sol-gel derived porous films for CO gas sensing”, Sensors and Actuators B: Chemical 96 (2003), pp. 717-722.
    [36] L. Znaidi and G. J. A. A. Soler Illia, S. Benyahia, C. Sanchez and A. V. Kanaev, “Oriented ZnO thin films synthesis by sol-gel process for laser application”, Thin Solid Films 428 (2003), pp. 257-262.
    [37] J. H. Lee and B. O. Park, “Transparent conducting ZnO :Al, In and Sn thin films deposited by the sol-gel method”, Thin Solid Films 426 (2003), pp.94-99.
    [38] M.T. Young and S. D. K. Shim, “Effects of rapid thermal annealing on the morphology and electrical properties of ZnO/In films”, Thin solid films 410 (2002), pp. 8-13.
    [39] G.K. Paul and S. K. Sen, “Sol-gel preparation, characterizeation and studies on electrical and thermoelectrical properties of gallium doped zinc oxide films”, Materials Letters 57 (2002), pp. 742-746.
    [40] D. C. Altamirano-Juarez and G. Torres-Delgado, “Low-resistivity ZnO:F:Al transparent thin films”, Solar Energy Materials & Solar Cells 82 (2004), pp. 35-43.
    [41] 黃琇澤,“以反應濺鍍法製備氧化鋅薄膜與摻雜鋁之研究”,中山大學材料所碩士論文,民國92年6月。
    [42] S. H. Jeong, J. W. Lee, S. B. Lee and J. H. Boo, “Deposition of aluminum-doped zinc oxide films by RF magnetron sputtering and study of their structural, electrical and optical properties”, Thin solid films 435 (2003), pp. 78-82.
    [43] E. S. Shim, H. S. Kang, J. S. Kang, J. H. Kim and S. Y. Lee, “Effect of the variation of films thickness on the structure and optical properties of ZnO thin films deposition on sapphire substrate using PLD”, Applied Surface Science 186 (2002), pp. 474-476.
    [44] P. Nunes, E. Fortunato and R. Matrins, “Influence of the annealing conditions on the properties of ZnO thin films”, International Journal of Inorganic Materials 3 (2001), pp. 1125-1128.
    [45] A. El Hichou, b. c. and M. Addou, “Cathodoluminescence properties of undoped and Al-doped ZnO thin films deposited on glass substrate by spray pyrolysis”, Materials Chemistry and Physics 83 (2004), pp. 43-47.
    [46] Y. Natsume and H. Sakata, “Zinc oxide films prepared by sol-gel spin-coating”, Thin Solid Films 372 (2000), pp. 30-36.
    [47] H. B. Huntington and A. R. Grone, “Current-Induced Marker Motion in Gold Wires” Journal of Physics and Chemistry of Solids 20 (1961), pp. 76-87.
    [48] C. Y. Chang, S. M. Sze, “ULSI Technology”, Mcgraw-Hill College (1996), p. 663.
    [49] E. C. C. Yeh, W. J. Choi, and K. N. Tu, P. Elenius, and H. Balkan, “Current-crowding-induced electromigration failure in flip chip solder joints” Applied Physics Letters 80 (2002), pp. 580-582.
    [50] J. P. Joule, “On the heat evolved by metallic conductors of electricity”, Philosophical Magazine 19 (1841), p. 260.
    [51] A. D. Li , Y. J. Wang, S. Huang, J. B. Cheng, D. Wu and N. Ben Ming, “Effect of in situ applied electric field on the growth of La2Ti2O7thin films by chemical solution deposition”, Journal of Crystal Growth 268 (2004), pp. 198–203.
    [52] A. D. Li, H .Q. Ling, D. Wu et al., “Characteristics of SrBi2Ta2O9 ferroelectric films in an in situ applied low electric field prepared by metalorganic decomposition”, Solid State Communication 125 (2003), pp. 469-473.
    [53] N. Parkansky, G. Shalev, B. Alterkop, S. Goldsmith a, R.L. Boxman, Z. Barkay, L. Glikman, H. Wulff and M. Quaas, “Growth of ZnO nanorods by air annealing of ZnO films with an applied electric field”, Surface & Coatings Technology 201 (2006), pp. 2844–2848.
    [54] 王文龍,“通電機制對 ZnO-In/Ag-ZnO 薄膜顯微組織與光電特性之影響”, 奈米科技暨微系統工程研究所碩士論文,民國97年。
    [55] P. Nunes, E. Fortunato and R. Martins, “Influence of the post-treatment on the properties of ZnO thin films”, Thin Solid Films 383 (2001), pp. 277-280.
    [56] 王志方,材料表面測定技術,復漢出版社 (1999)。
    [57] 蘇青森,儀器學,五南書局 (2002)。
    [58] M. Ahmad, R. U. Din, C. Pan and J. Zhu, “Investigation of Hydrogen Storage Capabilities of ZnO-Based Nanostructures”, The Journal of Physical Chemistry C 114 (2010), pp. 2560–2565.
    [59] S. Y. Kuo, W. C. Chen, F. I. Lai, C. P. Cheng, H. C. Kuo, S. C. Wang and W. F. Hsieh, “Effects of doping concentration and annealing temperature on properties of highly-oriented Al-doped ZnO films”, Journal of Crystal Growth 287 (2006), pp. 78–84.
    [60] K. M. Lin and P. Tsai, “Growth mechanism and characterization of ZnO: Al multi-layered thin films by sol–gel technique”, Thin Solid Films 515 (2007), pp. 8601–8604.
    [61] Y. S. Kim, W. P. Tai, “Electrical and optical properties of Al-doped ZnO thin films by sol–gel process”, Applied Surface Science 253 (2007), pp. 4911–4916.
    [62] L. Mei, K. M. Liang and H. Wang, “N-doping TiO2 thin film prepared by heat treatment in electric field”, Catalysis Communications 8 (2007), pp. 1187–1190.
    [63] M. Ishiguro, S. Maki and K. I. Mori, "Improvements in Mechanical Properties of Al–Mg–Si Alloy Sheets by Resistance Heat-treatment", Journal of Japan Institute of Light Metals 54 (2004), pp. 562-566.
    [64] R.E. Marotti, C. D. Bojorge, E. Broitman , H. R. Cánepa, J. A. Badán, E.A. Dalchiele and A. J. Gellman, “Characterization of ZnO and ZnO:Al thin films deposited by the sol–gel dip-coating technique”, Thin Solid Films 517 (2008), pp. 1077–1080.

    下載圖示
    QR CODE