研究生: |
黃佩璇 Huang, Pei-Syuan |
---|---|
論文名稱: |
探討VPS13C基因和巴金森病的關聯性:針對粒線體的功能研究 Investigating the Correlation between VPS13C and Parkinson’s Disease: Focusing on Mitochondria |
指導教授: |
李桂楨
Lee-Chen, Guey-Jen |
口試委員: |
李桂楨
Lee-Chen, Guey-Jen 吳逸如 Wu, Yih-Ru 陳瓊美 Chen, Chiung-Mei |
口試日期: | 2023/07/18 |
學位類別: |
碩士 Master |
系所名稱: |
生命科學系 Department of Life Science |
論文出版年: | 2023 |
畢業學年度: | 111 |
語文別: | 中文 |
論文頁數: | 45 |
中文關鍵詞: | 巴金森病 、VPS13C 、線粒體功能障礙 |
英文關鍵詞: | Parkinson’s disease, VPS13C, Mitchondrial dysfunction |
研究方法: | 實驗設計法 |
DOI URL: | http://doi.org/10.6345/NTNU202301640 |
論文種類: | 學術論文 |
相關次數: | 點閱:65 下載:4 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
巴金森病(PD)是一種老年人的常見神經退行性疾病。PD的病理特徵包括黑質中含有α-突觸核蛋白組成的路易體積累和多巴胺能神經元(Dopaminergic neuron)的選擇性缺失。根據先前的研究,環境、衰老和遺傳是PD的危險因素。近期遺傳學的研究已經確定了幾個基因是罕見單基因形式PD的原因,這表明錯誤折疊蛋白質的積累、線粒體功能障礙、氧化應激增加、蛋白酶體降解和自噬/線粒體自噬受損以及突觸小泡運輸缺陷,參與了發病機制。VPS13C屬於對囊泡轉運至關重要的大型VPS13蛋白家族。VPS13C有保護粒線體功能的作用。VPS13C耗竭導致線粒體膜電位降低和線粒體超氧化物增加,引發不可逆的線粒體損傷。本研究探討八種中草藥提取物,在線粒體氧化磷酸化解偶聯劑(FCCP)處理的SH-SY5Y細胞中,增強線粒體功能的作用。其中鉤藤、山梔子、蘇木、黃芩和何首烏等五種中草藥提取物,在FCCP處理的SH-SY5Y細胞中,可增加細胞存活率、提升線粒體膜電位,及/或減少線粒體超氧化物。RNA干擾中介的VPS13C基因敲低,亦導致SH-SY5Y細胞存活率降低、線粒體膜電位下降和線粒體超氧化物增加。在TPA誘導多巴胺能分化、VPS13C敲低的SH-SY5Y細胞中,鉤藤、山梔子、黃芩提取物的處理,減少了乳酸脫氫酶的釋放和凋亡蛋白酶-3活性,並促進了神經突生長。此外,這三種中草藥提取物逆轉了VPS13C敲低導致的線粒體膜電位下降和線粒體超氧化物上升。該研究結果將證實VPS13C在PD發病機制中的作用,並為PD治療提供治療策略。
Parkinson’s disease (PD) is a common neurodegenerative disorder affecting the elderly. The pathological features of PD include the accumulation of α-synuclein-containing Lewy bodies and selected loss of dopaminergic neurons in the substantia nigra. Environment, aging and genetics are reported risk factors of PD. Recently, genetic studies have identified several genes as the cause of rare monogenic forms of PD, suggesting that accumulation of misfolded proteins, mitochondrial dysfunction, increased oxidative stress, impaired proteasome degradation and autophagy/mitophagy, and deficits in synaptic vesicle trafficking are involved in the pathogenesis of PD. Vacuolar protein sorting 13 homolog C (VPS13C) belongs to a family of large VPS13 proteins crucial for vesicular transport. VPS13C also plays a role in mitochondrial maintenance. VPS13C depletion led to the reduction of mitochondrial membrane potential and increase of mitochondrial superoxide, triggering the irreversible mitochondrial damage. In this study, eight Chinese herbal extracts were examined for enhancing mitochondrial function in SH-SY5Y cells treated with carbonyl cyanide 4-(trifluoromethoxy)phenylhydrazone (FCCP), a potent mitochondrial oxidative phosphorylation uncoupler. Among them, five herbal extracts, U. rhynchophylla, G. jasminoides, C. sappan L., S. baicalensi and P. multiflorum, increased cell viability, elevated mitochondrial membrane potential, and/or reduced mitochondrial superoxide in FCCP-treated SH-SY5Y cells. Reduced cell viability, decreased mitochondrial membrane potential and increased mitochondrial superoxide were established in SH-SY5Y cells via RNA interference-directed VPS13C gene knockdown. In TPA-induced dopaminergic differentiation of SH-SY5Y cells with VPS13C knockdown, treatments of U. rhynchophylla, G. jasminoides and S. baicalensi reduced lactate dehydrogenase release and caspase-3 activity, and promoted neurite growth. In addition, these three herbal extracts reversed the impairment of decreased mitochondrial membrane potential and increased mitochondrial superoxide in VPS13C knockdown SH-SY5Y cells. The study results confirm the role of VPS13C in PD pathogenesis and provide a therapeutic strategy for PD treatment.
Anderson JP, Walker DE, Goldstein JM, de Laat R, Banducci K, Caccavello RJ, Barbour R, Huang J, Kling K, Lee M, Diep L, Keim PS, Shen X, Chataway T, Schlossmacher MG, et al. Phosphorylation of Ser-129 is the dominant pathological modification of α-synuclein in familial and sporadic Lewy body disease. J Biol Chem. 2006;281(40):29739-52.
Burchell VS, Nelson DE, Sanchez-Martinez A, Delgado-Camprubi M, Ivatt RM, Pogson JH, Randle SJ, Wray S, Lewis PA, Houlden H, Abramov AY, Hardy J, Wood NW, Whitworth AJ, Laman H, Plun-Favreau H. The Parkinson’s disease-linked proteins Fbxo7 and Parkin interact to mediate mitophagy. Nat Neurosci. 2013;16(9):1257-65.
Chang KH, Chen WL, Wu YR, Lin TH, Wu YC, Chao CY, Lin JY, Lee LC, Chen YC, Lee-Chen GJ, Chen CM. Aqueous extract of Gardenia jasminoides targeting oxidative stress to reduce polyQ aggregation in cell models of spinocerebellar ataxia 3. Neuropharmacology. 2014;81:166-75.
Clayton DE, George IM. Synucleins in synaptic plasticity and neurodegenerative disorders. J Neurosci Res. 1999;58(1):120-9.
Connop BP, Thies RL, Beyreuther K, Ida N, Reiner PB. Novel effects of FCCP [carbonyl cyanide p-(trifluoromethoxy)phenylhydrazone] on amyloid precursor protein processing. J Neurochem. 1999;72(4):1457-65.
Corti O, Hampe C, Darios F, Ibanez P, Ruberg M, Brice A. Parkinson’s disease: from causes to mechanisms. C R Biol. 2005;328(2):131-42.
de Rijk MC, Breteler MM, Graveland GA, Ott A, Grobbee DE, van der Meché FG, Hofman A. Prevalence of Parkinson’s disease in the elderly: the Rotterdam Study. Neurology. 1995;45(12):2143-6.
Dell’Antone P. Proton pump-linked Mg2+-ATPase activity in isolated rat liver lysosomes. Arch Biochem Biophys. 1988;262(1):314-25.
Dias V, Junn E, Mouradian MM. The role of oxidative stress in Parkinson’s disease. J Parkinsons Dis. 2013;3(4):461-91.
Eriksen JL, Wszolek Z, Petrucelli L. Molecular pathogenesis of Parkinson disease. Arch Neurol. 2005;62(3):353-7.
Funayama M, Nishioka K, Li Y, Hattori N. Molecular genetics of Parkinson’s disease: Contributions and global trends. J Hum Genet. 2023;68(3):125-30.
Giasson BI, Murray IV, Trojanowski JQ, Lee VM. A hydrophobic stretch of 12 amino acid residues in the middle of α-synuclein is essential for filament assembly. J Biol Chem. 2001;276(4):2380-6.
Gibb WR, Lees AJ. Anatomy, pigmentation, ventral and dorsal subpopulations of the substantia nigra, and differential cell death in Parkinson’s disease. J Neurol Neurosurg Psychiatry. 1991;54(5):388-96.
Heytler PG, Prichard WW. A new class of uncoupling agents--carbonyl cyanide phenylhydrazones. Biochem Biophys Res Commun. 1962;7:272-5.
Hoehn MM, Yahr MD. Parkinsonism: onset, progressions and mortality. Neurology. 1967;17(5):427-42.
Huang C, Lin F, Wang G, Lu D, Wu Q, Liu J, Shi J, Zhang F. Tetrahydroxystilbene glucoside produces neuroprotection against 6-OHDA-induced dopamine neurotoxicity. Oxid Med Cell Longev. 2018;2018:7927568.
Jansen IE, Ye H, Heetveld S, Lechler MC, Michels H, Seinstra RI, Lubbe SJ, Drouet V, Lesage S, Majounie E, Gibbs JR, Nalls MA, Ryten M, Botia JA, Vandrovcova J, et al. Discovery and functional prioritization of Parkinson’s disease candidate genes from large-scale whole exome sequencing. Genome Biol. 2017;18:22.
Jenner P. Oxidative stress in Parkinson’s disease. Ann Neurol. 2003;53 Suppl 3:S26-36; discussion S36-8.
Jensen JR, Rehder V. FCCP releases Ca2+ from a non-mitochondrial store in an identified Helisoma neuron. Brain Res. 1991;551(1-2):311-4.
Jiang IF, Zhang YJ, Zhou HY, Wang HM, Tian LP, Liu J, Ding JQ, Chen SD. Curcumin ameliorates the neurodegenerative pathology in A53T α-synuclein cell model of Parkinson’s disease through the downregulation of mTOR/p70S6K signaling and the recovery of macroautophagy. J Neuroimmune Pharmacol. 2013, 8(1):356-69.
Kumar H, More SV, Han SD, Choi JY, Choi DK. Promising therapeutics with natural bioactive compounds for improving learning and memory--a review of randomized trials. Molecules. 2012;17(9):10503-39.
Kumar N, Leonzino M, Hancock-Cerutti W, Horenkamp FA, Li P, Lees JA, Wheeler H, Reinisch KM, De Camilli P. VPS13A and VPS13C are lipid transport proteins differentially localized at ER contact sites. J Cell Biol. 2018;217(10):3625-39.
Lan YL, Zhou JJ, Liu J, Huo XK, Wang YL, Liang JH, Zhao JC, Sun CP, Yu ZL, Fang LL, Tian XG, Feng L, Ning J, Zhang BJ, Wang C, Zhao XY, Ma XC. Uncaria rhynchophylla Ameliorates Parkinson’s disease by inhibiting HSP90 expression: insights from quantitative proteomics. Cell Physiol Biochem 2018;47(4):1453-64.
Lesage S, Brice A. Role of mendelian genes in "sporadic" Parkinson’s disease. Parkinsonism Relat Disord. 2012;18 Suppl 1:S66-70.
Lesage S, Drouet V, Majounie E, Deramecourt V, Jacoupy M, Nicolas A, Cormier-Dequaire F, Hassoun SM, Pujol C, Ciura S, Erpapazoglou Z, Usenko T, Maurage CA, Sahbatou M, Liebau S, et al. Loss of VPS13C function in autosomal-recessive parkinsonism causes mitochondrial dysfunction and increases PINK1/Parkin-dependent mitophagy. Am J Hum Genet. 2016;98(3):500-13.
Lou H, Jing X, Wei X, Shi HI, Ren D, Zhang X. Naringenin protects against 6-OHDA-induced neurotoxicity via activation of the NIf2/ARE signaling pathway. Neuropharmacology. 2014;79:380-8.
Mohammed NA, Abdou HM, Tass MA, Alfwuaires M, Abdel-Moneim AM, Essawy AE. Oral supplements of ginkgo biloba extract alleviate neuroinflammation, oxidative impairments and neurotoxicity in rotenone-induced Parkinsonian rats. Curr Pharm Biotechnol. 2020;21(12):1259-68.
Muntane G, Ferrer I, Martinez-Vicente M. α-Synuclein phosphorylation and truncation are normal events in the adult human brain. Neuroscience. 2012;200:106-19.
Nebrisi EE. Neuroprotective activities of curcumin in Parkinson’s disease: A review of the literature. Int J Mol Sci. 2021;22(20):11248.
Obeso JA, Rodríguez-Oroz MC, Benitez-Temino B, Blesa FJ, Guridi J, Marin C, Rodriguez M. Functional organization of the basal ganglia: therapeutic implications for Parkinson's disease. Mov Disord. 2008;23 Suppl 3:S548-59.
Park KS, Jo I, Pak K, Bae SW, Rhim H, Suh SH, Park J, Zhu H, So I, Kim KW. FCCP depolarizes plasma membrane potential by activating proton and Na+ currents in bovine aortic endothelial cells. Pflugers Arch. 2002;443(3):344-52.
Parkinson J. An essay on the shaking palsy. 1817. J Neuropsychiatry Clin Neurosci. 2002;14(2):223-36, discussion 222.
Pickrell AM, Youle RJ. The roles of PINK1, parkin, and mitochondrial fidelity in Parkinson's disease. Neuron. 2015;85(2):257-73.
Przedborski S, Vila M. The last decade in Parkinson’s disease research. Basic sciences. Adv Neurol. 2001;86:177-86.
Radhakrishnan DM, Goyal V. Parkinson’s disease: A review. Neurol India. 2018;66(Supplement):S26-S35.
Schormair B, Kemlink D, Mollenhauer B, Fiala O, Machetanz G, Roth J, Berutti R, Strom TM, Haslinger B, Trenkwalder C, Zahorakova D, Martasek P, Ruzicka E, Winkelmann J. Diagnostic exome sequencing in early-onset Parkinson’s disease confirms VPS13C as a rare cause of autosomal-recessive Parkinson’s disease. Clin Genet. 2018;93(3):603-12.
Sengpiel B, Preis E, Krieglstein J, Prehn JH. NMDA-induced superoxide production and neurotoxicity in cultured rat hippocampal neurons: role of mitochondria. Eur J Neurosci. 1998;10(5):1903-10.
Sharma VD, Patel M, Miocinovic S. Surgical treatment of Parkinson’s disease: devices and lesion approaches. Neurotherapeutics. 2020;17(4):1525-38.
Song Q, Peng S, Zhu X. Baicalein protects against MPP+/MPTP-induced neurotoxicity by ameliorating oxidative stress in SH-SY5Y cells and mouse model of Parkinson’s disease. Neurotoxicology. 2021;87:188-94.
Song J, Liu L, Li Z, Mao T, Zhang J, Zhou L, Chen X, Shang Y, Sun T, Luo Y, Jiang Y, Tan D, Tong X, Dai F. Lycium barbarum polysaccharide improves dopamine metabolism and symptoms in an MPTP-induced model of Parkinson’s disease. BMC Med. 2022;20(1):412.
Spillantini MG, Schmidt ML, Ice VM, Trojanowski JQ, lakes R, Goedert M. α-Synuclein in Lewy bodies. Nature. 1997;388(6645):839-40.
Suski JM, Lebiedzinska M, Bonora M, Pinton P, Duszynski J, Wieckowski MR. Relation between mitochondrial membrane potential and ROS formation. Methods Mol Biol. 2012;810:183-205.
Trinh J, Farrer M. Advances in the genetics of Parkinson disease. Nat Rev Neurol. 2013;9(8):445-54.
Ueno K, Takeda Y, Iwasaki Y, Yoshizaki F. Simultaneous estimation of geniposide and genipin in mouse plasma using high-performance liquid chromatography. Anal Sci. 2001;17(10):1237-9.
Uversky VN, Li J, Fink AL. Pesticides directly accelerate the rate of α-synuclein fibril formation: a possible factor in Parkinson’s disease. FEBS Lett. 2001;500(3):105-8.
Velayos-Baeza A, Vettori A, Copley R, Dobson-Stone C, Monaco AP. Analysis of the human VPS13 gene family. Genomics. 2004;84(3):536-49.
Wang SC, Tseng TY, Huang CM, Tsai TH. Gardenia herbal active constituents: applicable separation procedures. J Chromatogr B Anal Technol Biomed Life Sci. 2004;812(1-2):193-202.
Xie HR, Hu LS, Li GY. SH-SY5Y human neuroblastoma cell line: in vitro cell model of dopaminergic neurons in Parkinson’s disease. Chin Med J (Engl). 2010;123(8):1086-92.
Yang X, Thomas DP, Zhang X, Culver BW, Alexander BM, Murdoch WI, Rao MN, Tulis DA, Ren J, Sreejayan N. Curcumin inhibits platelet-derived growth factor-stimulated vascular smooth muscle cell function and injury-induced neointima formation. Arterioscler Thromb Vasc Biol. 2006;26(1):85-90.
Yan YC, Xu ZH, Wang J, Yu WB. Uncovering the pharmacology of Ginkgo biloba folium in the cell-type-specific targets of Parkinson’s disease. Front Pharmacol. 2022;13:1007556.
Yin F, Liu J, Zheng X, Guo L, Xiao H. 2010. Geniposide induces the expression of heme oxygenase-1 via PI3K/Nrf2-signaling to enhance the antioxidant capacity in primary hippocampal neurons. Biol Pharm Bull. 2010;33(11):1841-6.
Zeng KW, Zhao MB, Ma ZZ, Jiang Y, Tu PF. Protosappanin A inhibits oxidative and nitrative stress via interfering the interaction of transmembrane protein CD14 with toll-like receptor-4 in lipopolysaccharide-induced BV-2 microglia. Int Immunopharmacol. 2012;14(4):558-69.
Zhang R, Sun F, Zhang L, Sun X, Li L. Tetrahydroxystilbene glucoside inhibits α-synuclein aggregation and apoptosis in A53T α-synuclein-transfected cells exposed to MPP. Can J Physiol Pharmacol. 2017;95(6):750-8.
Zhao X, Kong D, Zhou Q, Wei G, Song J, Liang Y, Du G. Baicalein alleviates depression-like behavior in rotenone- induced Parkinson’s disease model in mice through activating the BDNF/TrkB/CREB pathway. Biomed Pharmacother. 2021;140:111556.