簡易檢索 / 詳目顯示

研究生: 曹貴雄
論文名稱: Haynes230超合金銲件高溫機械性質之研究
指導教授: 馮丹白
Feng, Dan-Bai
周長彬
Zhou, Chang-Bin
學位類別: 碩士
Master
系所名稱: 工業教育學系
Department of Industrial Education
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 100
中文關鍵詞: Haynes230超合金銲件機械性質
英文關鍵詞: Haynes 230, superalloy, weldment, mechanical properties
論文種類: 學術論文
相關次數: 點閱:214下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究針對Haynes 230超合金施以惰性氣體鎢極電弧銲(GTAW)及電漿銲(PAW),以進行常溫及高溫機械性質之研究。研究之進行是透過微硬度試驗、拉伸試驗、光學顯微鏡觀察及掃瞄式電子顯微鏡觀察,探討Haynes230超合金銲件之機械性質及分析銲件微觀組織結構。並比較各種銲接法對Haynes230超合金機械性質之影響,以供使用者參考。
      研究結果顯示,Haynes230超合金銲件之常溫、高溫機械性質於強度值及硬度值方面,於300℃、400℃及500℃均不因溫度增加而呈現不穩定之現象。表示於此些溫度之下,Haynes230超合金經TIG有填料、TIG無填料及PAW無填料之機械性質均屬穩定,可以安心使用。

    Superalloy Haynes 230 was taken mainly in this research to go through the study for its mechanical properties at room temperature and high temperature when applied to the inert Gas Tungsten Arc Welding(GTAW) and Plasma Arc Welding(PAW). The study was carried out through the processes of Microhardness Test, Tensile Test, Observation of Optical Microscope and Scanning Electron Microscope, etc. to explore the mechanical properties of parts welded by superalloy Haynes 230 and analyze the microstructure of weldment. A comparison amongst the variety of welding methods for their impacts against the mechanical properties of superalloy Haynes 230 was made as a provision of reference to the users.
    As learned from the results of research, the mechanical properties at room temperature and high temperature of weldment when superalloy Haynes 230 are applied.
      The parts welded by superalloy Haynes 230 from the TIG welding and PAW welding will not have unstable strength and hardness at 300C, 400C and 500C when the temperature goes up. To mean, the parts welded by superalloy Haynes 230 from the TIG welding and PAW welding will have stable mechanical properties at 300C, 400C and 500C . It will to be relieved when superalloy Haynes 230 are applied.

    頁次 謝誌……………………………………………………………………I 中文摘要………………………………………………………………II 英文摘要………………………………………………………………III 目錄……………………………………………………………………IV 表目錄…………………………………………………………………VI 圖目錄…………………………………………………………………VII 第一章 緒論…………………………………………………………1 第一節 研究背景……………………………………………………1 第二節 研究動機……………………………………………………2 第三節 研究目的……………………………………………………3 第四節 研究範圍與限制……………………………………………4 第五節 研究方法……………………………………………………5 第六節 名詞釋義……………………………………………………6 第二章 文獻探討……………………………………………………7 第一節 超合金材料…………………………………………………7 第二節 Haynes 230超合金材料及其熱處理………………………11 第三節 銲接熱裂縫原理……………………………………………24 第四節 TIG銲接原理及設備簡介 …………………………………32 第五節 電漿銲接基本原理…………………………………………34 第三章 研究方法與步驟……………………………………………39 第一節 研究流程及材料設備實驗…………………………………39 第二節 金相觀察……………………………………………………47 第三節 機械性質測試………………………………………………49 第四節 掃描式電子顯微鏡觀察……………………………………52 第四章 結果與討論…………………………………………………53 第一節 金相顯微組織觀察…………………………………………54 第二節 拉伸試驗……………………………………………………58 第三節 硬度試驗……………………………………………………77 第四節 SEM試驗 ……………………………………………………86 第五章 結論與建議…………………………………………………93 第一節 結論 ………………………………………………………93 第二節 建議 ………………………………………………………95 參考資料………………………………………………………………96

    一、 中文部份:
    吳振堂(民92)。Haynes230超合金銲接特性之研究。國立台灣師
      範大學碩士論文。
    Reed, R. E. & Abbaschian, H. R. (民89)。物理冶金(劉偉隆等
    譯)。台北市:全華。(原書發行於1973)。
    王振欽編(民74)。銲接學。高雄:登文。
    朱登雄(民78)。銲接龜裂與其防止對策(2)─高溫龜裂。機械月刊,
      第10期,頁122-126。
    呂登復(民73)。電子探針微區分析儀EMPA。科儀新知,第6卷
      第3期,頁75-86。
    汪建民主編(民87)。材料分析。 新竹市:中國材料學會。
    周長彬等(民88)。銲接學。台北市:全華書局。
    周長彬等(民92)。Haynes 230超合金銲接性及熱裂性簡介。銲接
      與切割,第13卷第3期,頁22-26。
    孟繼洛(民79)。機械材料。台北市:曉園。
    林后堯等(民91)。多功能可調應變試驗機之開發及其應用研究。中華
      民國銲接協會91年度銲接論文發表會,頁8-13。
    林樹均等(民79)。材料工程實驗與原理。台北巿:全華。
    韋孟育編(民81)。材料實驗方法-金相分析技術。台北市:全華。
    陳皇鈞譯(民75)。材料科學與工程。台北市:曉園。
    劉國雄等(民88)。機械材料科學。台北市:全華。
    蔡丕椿等(民88)。材料科學與工程。台北市:全華書局。
    龔伯康譯(民81)。現代銲接學。台北巿:徐氏基金會。
    二、英文部份:
    AWS, (1991). Welding Process. Welding Handbook 8th Ed, 2,
      pp. 75-89.
    Baeslack, W. A., Ⅲ, Lippold, J. C., & Savage, W. F.
      (1979). Unmixed Zone Formation in Austenitic Stainless
      Steel Weldments. Welding Journal, 58(6), pp.168s-176s.
    Borland, J. C., & Younger, R. N. (1960). Some aspects of
      cracking in welded Cr-Ni austenitic steels. British
      Welding Journal, 6(1),pp. 9-46.
    Borland, J. C., & Younger, R. N. (1960). Generalized Theory
      of Super-Solidus Cracking in Welds (And Casting).
      British Welding Journal, 7(8), pp. 508-512.
    Bradley, E. F. (1988). Superalloys: a technical guide,
      Metals Park: ASM International.
    Cary, H. B. (1994). Modern welding technology. New Jersey,
      Prentice Hall Inc.
    Connor, L. P. (1987). Welding Handbook. Miami.
    David, S. A. (1986). Advances in Welding Science and
      Technology. Oak Ridge, Tennessee.
    Fukuhisa, Matsuda, (1990). Keynote Address Solidification
      Crack Susceptibility of Weld Metal. Conference on
      Trends in Welding Research: Recent trends in welding
      science and technology, Materials Park, Ohio: ASM
      International, pp. 127-136.
    Ganesan, P., Smith, G. D., & Yates, D. H. (1995).
      Performance of Inconel Alloy 617 in Actual and
      Simulated Gas Turbine Environments, Advanced Mater. And
      Manu. Process, 10(5), pp.925-938.
    Guinier, Andre (1989). The solid state: from
      superconductors to superalloys. International Union of
      Crystallography: Oxford, Oxford University Press, New
      York.
    Hemsworth, B., Bohiszewski, T., & Eaton, N. F. (1969).
      Classification and Definition of High Temperature
      Welding Cracks in Alloys. Metal Construction, & Brit.
      W. J., 1(2), pp. 5-16.
    Jones, R. A. (1990). High Alloy, Thin-Selection Baskets
      Reduce Vacuum Cooling Time, Heat treating, 22 (4), pp.
      21-23.
    Jones, R. A. (1992). Assessing Work-Basket Alloys For
      Vacuum Furnaces, Heat treating, 24 (5), pp. 14-17.
    Jones, R. A. (1995). Assessing Alloys For Vacuum Heat
      Treating, Heat treating,2(2), pp. 39-41.
    Kou, Sindo, (1987). Welding metallurgy.
      NewYork:Wiley.Lancaster
    , J. F. (1965). Metallurgy of Welding. Cambridge England:
      Abington Publishing.
    Lancaster, J. F. (1986). The Physics of welding. New York.
    Lang, E. (1989). The role of active elements in the
      oxidation behaviour of high temperature metals and
      alloys. London and New York: Elsevier Applied Science.
    Olson, D. L., Dixon, R., & Liby, A. L. (1989). Welding:
      theory and practice.New York: Sole distributors for the USA and Canada, Elsevier Science Pub. Co.
    Rothman, M. F. (1990). Pressure Vessel Code Construction
      Capabilities For a Nickel-Chromium-Tungsten-
      Molybdenum Alloy, Pressure Vessels and Piping
      Conference: New alloys for pressure vessels and piping
      New York: American Society of Mechanical Engineers, pp.
      179-187.
    Savage, W. F., & Lundin, C. D. (1965). The Varestraint
      Test, Welding, 44(10),pp. 433-442.
    Sims, C. T., Stoloff, N. S., & Hagel, W. C. (1972). The
      Superalloys,New York: General Electric Company.
    Sims, C. T., Stoloff, N. S., & Hagel, W. C. (1987).
      SuperalloysⅡ, New York: A wiley-Interscience
      Publication.
    Starink, M. J., & Thomson, R. C. (2001). The Effect of High
      Temperature Exposure on Dendritic Segregation in a
      Conventionally Cast Ni Based Superalloy, Jounal of
      Materials Science, 36, pp. 5603-5608.
    Thakur, A., Vecchio, K. S., & Nasser, S. N. (1996).
      Bauschinger Effect in Haynes 230 Alloy, Influence of
      Strain Rate and Temperature. Metal. And Mete. Tran. A,
      27A(7), pp.1739-1748.
    Vecchio, K. S., Fitzpatrick, M. D., & Klarstrom, D.
      (1995).Influence of Subsolvus Thermomechanical
      Processing on the Low-Cycle Fatigue Properties of
      Haynes 230 Alloy, Metallurgical and Materials
      Transactio-ns A, 26A(3), pp.673-689.
    Walter, J. L., Jackson, M. R., & Sims, C. T. (1988).
      Alloying. Metals Park,Ohio: Carnes Publication.
      Whittenberger, J. D. (1994). Tensile Properties of
      Haynes 230 and Inconel 617after Long Exposure to LiF-
      22CaF2 and Vacuum at 1093K. Journal of Materials
      Engineering and Performance,3(6),  pp. 763-774.

    QR CODE