簡易檢索 / 詳目顯示

研究生: 劉雲平
Yun-Ping Liu
論文名稱: 以第一原理計算研究鍶與碳族元素為基底的雙鈣鈦礦中的半金屬材料
First-Principle Studies of Half-Metallic Materials in Sr and IV-Group Element Based on Double Perovskites Structure Compounds
指導教授: 王銀國
Wang, Yin-Kuo
學位類別: 博士
Doctor
系所名稱: 物理學系
Department of Physics
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 82
中文關鍵詞: 第一原理計算半金屬材料雙鈣鈦礦
英文關鍵詞: First-Principle, Half-Metallic Materials, Double Perovskites Structure
論文種類: 學術論文
相關次數: 點閱:221下載:21
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在這篇論文中,我們以鍶基底的雙鈣鈦(Sr-based Double Perovskites)結構,以第一原理計算找尋可能存在的半金屬。在Sr2BB′O6中(B,B’=過渡金屬)找到三個系列的半金屬組合,另外也A2Fe(Cr)MO6 (A=IVA族元素, M=Mo, Re and W)找到半金屬的一系列候選材料。我們使用的計算程式為VASP根據密度泛函(DFT)理論來計算材料的結構最佳化,從最初的四種磁相態出發:鐵磁(FM)、亞鐵磁(FiM)、反鐵磁(AFM)與無磁性(NM),其中使用廣義梯度近似(GGA)以及考慮庫倫排斥效應(GGA+U)。

    在第一章中,我們簡單介紹磁性半金屬過去的研究發展,以及我們找到那些可能的磁性磁半金屬候選者。

    在第二章中,我們簡單介紹相關的理論及計算方法,包括Born-Oppenheimer 近似、密度泛函理論(DFT)。其中包括Hohangberg-Kohn理論、Kohn-Sham方程式
    、交換關連效應、侷域密度近似(LDA)與廣義梯度近似(GGA)。使用的計算程式為VASP,其使用擴增平面波方式來計算。並且最後介紹庫倫電子關聯效應(LDA/GGA+U)。

    在第三章中,我們簡單介紹磁性半金屬的特性,並且對過去十幾年來關於磁性半金屬材料的研究發展做一些簡介。並且詳細介紹雙鈣鈦結構以及初始的四種磁相態。最後,我們介紹整個研究的計算流程與計算的設定參數以及造成半金屬的重要物理機制-雙交換作用(double exchange)。

    在第四章中,將會詳細介紹在緦基底的雙鈣鈦結構(Sr2BB′O6, B,B’=過渡金屬)中,我們找尋到三個系列的半金屬候選人,此分類的方式是根據BB′離子在週期表上分部的組合。第一系列為:Sr2Cr(Co)B′O6 (B′=Sc, Y, La, Ti, Zr 與Hf) 以及 Sr2V(Fe)B′O6 (B′= Zr 與Hf)。在第一系列中最有可能成為半金屬的為Sr2CrScO6、Sr2CrLaO6、Sr2CrTiO6、Sr2VZrO6以及Sr2VHfO6這些材料。第二系列為Sr2BB′O6 (B = Co, Cu 與Ni; B′ = Mo, W, Tc 與Re),最有可能成為半金屬的是Sr2FeTcO6、Sr2CoWO6 與 Sr2NiTcO6。第三系列為Sr2ZnBO6 (B=Mn, Tc, Re, Fe, Ru, Os, Co, Ni, Pd 與Au),其中Sr2ZnMnO6與Sr2ZnPdO6是半金屬材料的最佳選擇。整體的篩選是建構在比較不同磁相態的能量,並且同時在GGA與GGA+U兩種不同的情況皆為穩定才能脫穎而出。
    在第五章中,我們基於Sr2FeMoO6可以將緦(Sr)置換為IVA族元素的想法,來發展出A2Fe(Cr)MO6(A=IVA族元素, M=Mo, Re 與W)的半金屬系列材料。這樣的想法是基於IIA(s2)族元素與IVA(p2)的外層價電子非常相似的緣故。結果顯示在A為錫(Sn)與鉛(Pb)是較為穩定並且較有可能被合成的半金屬候選材料。

    最後,我們總結所有理論預測結果並且重述造成半金屬的物理機制。

    我們希望這篇論文可以在尋找半金屬材料方面的研究提供一些有用的訊息,希望對於未來合成半金屬材料的實驗能有所幫助。

    In this thesis, we thoroughly investigated three possible candidates series of half-metallic (HM) in the double perovskites structure Sr-based double perovskites Sr2BB′O6 (BB′=transition metal ions) and A-site substitution double perovskites A2Fe(Cr)MO6 (A=IVA group elements, M=Mo, Re and W). The calculation is based on the density functional theory (DFT) with full-structure optimization by generalized gradient approximation (GGA) and consideration of the strong correlation effect (GGA+U) and started with 4 types of initial magnetic states, i.e. ferromagnetic (FM), ferrimagnetic (FiM), antiferromagnetics (AF) and nonmagnetic (NM) using full-potential projector augmented wave (PAW) method within conjugate-gradient (CG) method implemented in VASP package (code).

    In the first chapter, we briefly introduced the previous researches of HM compounds and what series investigation that we had done.

    In chapter 2, we introduced the Born-Oppenheimer approximation, DFT (including Hohangberg-Kohn theorems, Kohn-Sham equations, exchange-correlation functional, local (spin) density approximation (L(S)DA) and generalized-gradient approximation (GGA)), as well as computational methods we used, including Projector Augmented Wave (PAW) method in VASP code and electron correlation effect (+U calculation).

    In chapter 3, we introduced its characteristics and properties of HM materials with reviewing the different structures that had been discovered. The detail of double perovskites structure and the initial magnetic states configurations are also introduced in this chapter. In the end, the calculation procedure with detailed setting parameter and double exchange mechanism of causing HM characteristics are schematic diagramed.

    In chapter 4, for Sr-based double perovskites Sr2BB′O6 (BB′=transition metal ions), we classified the possible HM compound into 3 groups according to the electronic configuration of the BB′ ion pairs. In Group 1: Sr2Cr(Co)B′O6 (B′=Sc, Y, La, Ti, Zr, and Hf) and Sr2V(Fe)B′O6 (B′= Zr and Hf), the most promising candidates are Sr2CrScO6, Sr2CrLaO6, Sr2CrTiO6, Sr2VZrO6 and Sr2VHfO6. In Group 2: Sr2BB′O6 (B = Co, Cu, and Ni; B′ = Mo, W, Tc, and Re), Sr2FeTcO6, Sr2CoWO6 and Sr2NiTcO6 are the most possible HM candidates. And for Group 3: Sr2ZnBO6 (B=Mn, Tc, Re, Fe, Ru, Os, Co, Ni, Pd, and Au), the best choices for HM materials are Sr2ZnMnO6 and Sr2ZnPdO6. The selection is based on the energy differences between F(i)M and AF state in both GGA and GGA+U scheme.

    In chapter 5, for A-site substitution double perovskites A2Fe(Cr)MO6 (A=IVA group elements, M=Mo, Re and W), based on Sr2FeMoO6, we substituted the Sr ion with IVA group elements according to the similar valence electrons noting as IIA(s2) and IVA(p2). The results shows that choosing A= Sn and Pb can be able to synthesize stable HM double perovskites compounds.

    In the last chapter, we will make a summary of our work including the research method, the main results and the mechanism of causing HM compounds.

    We hope that this thesis on the searching HM compounds in double perovskites structures are useful for experimental research and bring up the research upsurge of HM materials.

    1 Introduction 8 2 Density Functional Theory (DFT) and computational methods 10 2.1 Born-Oppenheimer approximation 2.2 Density Functional Theory (DFT) 2.2.1 Hohanberg-Kohn theorems 2.2.2 Kohn-Sham equations 2.2.3 Exchange-correlation functionals 2.3 Projector Augmented Wave (PAW) method (VASP package) 2.4 L(S)DA(GGA)+U method 3 Half-Metallic (HM) Materials 21 3.1 What is HM Materials? 3.2 The review of HM compounds research 3.3 Double perovskites structure and magnetic phase 3.3.1 Double perovskites structure 3.3.2 Structural optimization 3.3.3 Magnetic States 3.4 Calculation procedure 3.5 The formation of HM: Double-exchange couplings 4 HM Materials in Sr2BB′O6 (B/B′ = transition metal) 28 4.1 The searching groups 4.2 Group 1: 3B/4B transition metal pair with Cr, Co, V and Fe 4.3 Group 2: 6B/7B transition metal pair with Co, Cu and Ni 4.4 Group 3: 7B/8B/1B transition metal pair with Zn 4.5 Other Possible Space Group 5 HM Materials in A2BB′O6 (A = IVA group, B=Fe and Cr, B′ = Mo, Re and W) 59 5.1 IVA group elements on the A(Sr)-site position 5.2 A2FeMO6 5.3 A2CrMO6 6 Summary and Publication List 77

    [1] J. H. Park, E. Vescovo, H. J. Kim, C. Kwon, R. Ramesh, and T. Venkatesan, Nature (London) 392, 794 (1998).
    [2] W. E. Pickett and J. S. Moodera, Phys. Today 54, 39 (2001).
    [3] K. I. Kobayashi, T. Kimura, H. Sawada, K. Terakura, and Y. Tokura, Nature (London) 395, 677 (1998).
    [4] K. Schwarz, J. Phys. F: Met. Phys. 16, L211 (1986).
    [5] H.T Jeng, G. Y. Guo, Phys. Rev. B 67 ,094438(2003)
    [6] T.S. Chan, R.S. Liu, G.Y. Guo, S.F. Hu, J.G. Lin, J.M. Chen and C.-R. Chang, Solid State Commun 133(2005)265
    [7] Hua Wu, Phys. Rev. B 64 ,125126(2001)
    [8] Y. K. Wang, P. H. Kee and G. Y. Guo, Phys. Rev. B 80, 224418 (2009).
    [9] Coey J M D, Viret M, von Molnar S, Adv. Phys, 48, 167(1999).
    [10] Leeor Kronik, Manish Jain, et al, Phys. Rev. B. 66, 041203(2002).
    [11] M. S. Park, S. K. Kwon, S. J. Toun, and B. I. Min, Phys. Rev. B 59, 10018 (1999).
    [12] M. Shirai, T. Ogawa, I. Kitagawa, and N. Suzuki, J. Magn. Magn. Mater. 77-181, 1383(1998)
    [13] J. H. Park, S. K. Kwon and B. I. Min, Physica B 281-282, 703(2000)
    [14] F. Galasso, Inorg. Chem. 2, 482(1963).
    [15] T. Nakamura, J.H. Choy, J. Solid State Chem. 20, 233(1977).
    [16] H. Kato, T. Okuda, Y. Okimoto, Y. Tomioka, Phys. Rev. B 69 ,184412(2004)
    [17] C.Q. Tang, Y. Zhang, J. Dai, Solid State Commun 133(2005)219.
    [18] J. B. Philipp et al. Phys. Rev. B 68 ,144431(2003)
    [19] M. Born and V. A. Fock, Z. Phys. 51, 165 (1928).
    [20] M. Born and J. R. Oppenheimer, Ann. Phys. 84, 457 (1927).
    [21] P. Hohenberg and W. Kohn, Phys. Rev. 136, B864-871 (1964).
    [22] W. Kohn, and L. J. Sham Phys. Rev 140, A1133-A1138, (1965).
    [23] Y. Wang and J. P. Perdew, Phys. Rev. B 44, 13298 (1991); J. P. Perdew and Y. Wang, Phys. Rev. B 45, 13244 (1992).
    [24] J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).
    [25] M. Levy, Proc. Natl. Sci. USA, 76, 6062 (1979).
    [26] M. Levy, Phys. Rev. A 26,1200 (1982).56
    [27] J. P. Perdew and M. Levy, Phys. Rev. Lett. 51, 1884 (1983).
    [28] J. C. Slater, Wavefunction in a periodic potential, Phys. Rev. 51, 846 (1937).
    [29] G. Kresse, and J. Hafner, Phys. Rev. B 48, 13115 (1993)
    [30] G. Kresse and J. Furthmüller, Comput. Mater. Sci. 6, 15 (1996); Phys. Rev. B 54, 11169 (1996).
    [31] S. Yip et. al Handbook of Materials Modeling 93-119, Springer, (2005).
    [32] V. I. Anisimov, J. Zaanen, and O. K. Andersen. Phys. Rev. B 44, 943 (1991).
    [33] A. I. Lichtenstein, V.I. Anisimov, and J. Zaanen. Phys. Rev. B 52, R5467 (1995).
    [34] V.I. Anisimov, F. Aryasetiawan, and A.I. Lichtenstein, J.Phys.: Condens. Matter 9, 767 (1997).
    [35] H. T. Jeng, G. Y. Guo, and D. J. Huang, Phys. Rev. Lett.93, 156403 (2004).
    [36] X. Jiang and G. Y. Guo, Phys. Rev. B 70, 035110 (2004).
    [37] R. A. de Groot, F. M. Mueller, P. G. van Engen, and K. H. J. Buschow, Phys. Rev. Lett. 50, 2024 (1983).
    [38] H. van Leuken and R. A. de Groot, Phy. Rev. Lett. 75, 1171 (1995).
    [39] S.Wurmehl, H. C. Kandpal, G. H. Fecher, and C. Fecher, Jurnal Phys. : Condens. Matter, 18, 6171 (2006).
    [40] I. Galanakis, K. Özdogan, E. Sasioglu, and B. Aktas, Phys. Rev. B 75, 172405 (2007).
    [41] B. R. K. Nada and I Dasgupta, L Phys.: Condens. Matter 15, 7307(2003)
    [42] Ishida S, Fujiis S, Nagayoshi H, Asnao S, Physica B, 254, 157(1998)
    [43] Ming Zhang, Haining Hu et al, J. Magn. Magn. Mater, 277, 130(2004)
    [44] Steven P. Lewis, Philip B. Allen, Taizo Saski, Phys. Rev. B, 55, 10253(1997).
    [45] F.J. Jedema, A.T. Fillip, B. Van Wees, et al, Nature, 410, 345(2001) Ji Y, Srtijkers J, Tangg F Y, et al. Phy. Rev. Lett, 86, 5585(2001); Anguelounch A, Phys. Rev. B, 64, 180408(2001).
    [46]. T. Saitoh, M. Nakatake, A Kakizaki, et al, Phys. Rev. B, 66, 035112(2002).
    [47]. P.K. de boer, H. Van Leuken et al, Solid State Communications, 102, 621(1997).
    [48] I. V. Solovyev, P.H. Dederichs, and V.I. Anisimov, Phys. Rev. B. 50, 16861 (1994) .
    [49] I. V. Solovyev and K. Terakura, Phys. Rev. Lett 82, 2959 (1999). 57
    [50] I. V. Solovyev and K. Terakura, in Electronic Structure and Magnetism of Complex Materials, edited by D. J. Singh and D. A. Papaconstantopoulos (Springer-Verlag, Berlin, 2003).
    [51] C. Zener, Phys. Rev. 82, 403 (1951).
    [52]Salah Eldin Ashamallah Yousif, O.A. Yassin, Physica B 2038-2042, 406(2011).
    [53] I. R. Shein, V. L. Kozhevnikov, and A. L. Ivanovskii, JETP Letters, 82, No. 4, 2005, pp. 220–223.
    [54] D.A.LandínezTéllez ,J.A. RodríguezMartínez ,J.Roa-Rojas, Revista Colombiana de Física, 43, No. 3(2011), 766-770.
    [55] A. AZIZI et al, Int. J. Mod. Phys. B 22, 3579 (2008).
    [56] Viola M.C. et al, Chem. Mater. 14(2) 812-818 (2002).
    [57] M. Bonilla, et al, J. Magn. Magn. Mater, 320 (2008) e397–e399
    [58] MC Viola, MJ Martínez-Lope, JA Alonso, JL Martínez, JM De Paoli, S Pagola, JC Pedregosa, MT Fernández-Díaz and RE Carbonio. Chem. Mater. 15(2003), 1655-1663.
    [59] María Retuerto, María Jesús Martínez-Lope,Mar García-Hernández,María Teresa Fernández-Díaz, and José Antonio Alonso, Eur. J. Inorg. Chem. 2008, 588–595
    [60] Xin Chen, David Parker, Khuong P. Ong, Mao-Hua Du, and David J. Singh, APPLIED PHYSICS LETTERS 102, 102403 (2013).
    [61] I.O Troyanchuk, L.S Lobanovsky, H Szymczak, K Bärner, Journal of Magnetism and Magnetic Materials 219 (2000) 163-165.
    [62] K. Ramesha, L. Sebastian, B. Eichhorn and J. Gopalakrishnan, J. Mater. Chem., 2003, 13, 2011–2014
    [63] Terakura, K.; Fang, Z. and Kanamori, J. J. Phys. Chem. Solids.2002, 63, 907-912.
    [64] J.B. Goodenough, Phys. Rev. 100 (1955) 564.
    [65] J.B. Goodenough, Phys. Chem. Solids 6 (1958) 287.
    [66] J. Kanamori, Phys. Chem. Solids 10 (1959) 87.
    [67] K. Ramesha, L. Sebastian, B. Eichhorn and J. Gopalakrishnan, Chem. Mater. 15, (2003) 668-674

    下載圖示
    QR CODE