簡易檢索 / 詳目顯示

研究生: 聞浩德
Wen, Haw-Der
論文名稱: 名人堂入選模型之研究—以美國棒球大聯盟為例
The Study of Hall of Fame Induction Model - Evidence from Major League Baseball
指導教授: 朱文增
Chu, Wen-Tseng
口試委員: 温良財 王清欉 朱文增
口試日期: 2021/07/08
學位類別: 碩士
Master
系所名稱: 運動休閒與餐旅管理研究所
Graduate Institute of Sport, Leisure and Hospitality Management
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 163
中文關鍵詞: 美國棒球名人堂臺灣棒球名人堂賽伯計量學區別分析羅吉斯分析
英文關鍵詞: Baseball Hall of Fame, Taiwan Baseball Hall of Fame, Logis regression, Sabermetrics, Discriminative analysis
研究方法: 次級資料分析
DOI URL: http://doi.org/10.6345/NTNU202101451
論文種類: 學術論文
相關次數: 點閱:105下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 美國棒球名人堂自1936年成立,至今2020年已有332位成員,其中的233位是以球員的身分入選。美國棒球名人堂入選的依據為球員的數據、能力、正直、運動精神、性格及對球隊貢獻的綜合評比,也因此並非有單一標準得以衡量之。過去的研究曾經以名人堂的入選是否存在著種族歧視為主體建構了名人堂入選的預測模型,雖然並未將所有球員數據的變項納入討論,但仍提供了本研究建立模型的基礎。
    本研究以2000~2020年存在於名人堂選票上的球員為樣本,將球員分成先發投手、後援投手及野手,採計了球員在投球、打擊及守備的相關數據,更進一步加上了其所獲得的獎項作為自變數,以是否入選名人堂為應變數,採用區別分析以及羅吉斯迴歸建立一以美國棒球名人堂為基礎的預測模型。臺灣棒球名人堂則於2014年成立,至今只有7年歷史,選入的選手數量也不若棒球名人堂,未來的發展方向可以多向有設立棒球名人堂之國家參考。透過區別分析函數和羅吉斯迴歸的結果透過勝算比的方式轉為是否能進入名人堂之機率,加以對臺灣職棒球員其生涯超過10年者做預測。
    研究結果指出,選入的變項在名人堂與非名人堂球員之間皆有顯著差異,其中,以明星賽為主要選入之變項,同時也代表著,美國棒球名人堂的成員與明星賽的入選有所關連。以中華職棒的球員做預測,預測結果先發投手潘威倫無論以何種方式計算都將會上榜;後援投手中劉義傳、高建三無論以何種方式預測皆會入選;野手中,張泰山、林智勝、彭政閔及黃忠義無論以何種方式預測皆會入選。對於後續的研究,希望能著眼於數據差異及尚且無法量化的能力,提供中華職棒更準確合適的預測模型。

    National Baseball Hall of Fame and Museum (hereafter HOF) was established in 1936. HOF has included 332 members by 2020, 233 of which are selected as baseball players. The voting mechanism and reference of HOF shall be based upon the player's record, playing ability, integrity, sportsmanship, character, and contributions to the team(s) on which the player (has) played. Therefore, a coherent standard to elected members in HOF is absent. Generated predictive analytics models, examining the existence of racism within the HOF selection mechanism, research in the past lack of including all the potential variables, impacting on the performance of players. As a result, the thesis aims to construct the predictive model on the basis of previous literatures. To build up a predictive analytics model in analysing HOF selection mechanism, the study categorises the players on the HOF ballots from 2000 to 2020, as starting pitchers, relief pitchers, and fielders.
    This study uses the players who is on the HOF ballots from 2000 to 2020 as sample, and divides the players into starting pitchers, relief pitchers, and fielders. This study collects relevant data on the players' pitching, batting, fielding, and awards as independent variables. Whether players is selected or not as dependent variables. On the contrary, established in 2014 and welcoming its 7th anniversary, the scale of Taiwan Baseball Hall of Fame and that of HOF exists a huge gap in member amounts. The future development of Taiwan HOF may refer to other countries with long-term history of HOF.The research employs discriminative analysis and Logis regression, to predict the possibility of current players with over 10 years career in Chinese Professional Baseball League (hereafter CPBL) being elected in HOF.
    The research results demonstrate that there are significant differences between the selected variables of HOF and non-HOF. Among them, the variables of whether participating in All-Star shares correlation in being elected as HOF members. In the prediction models, Wei-Lun Pan could be selected as starting pitchers, Yi-Chuan Liu and Jian-San Gao could be selected as relief pitchers, and Tai-Shan Zhang , Zhi-Sheng Lin , Zheng-Min Peng and Zhong-Yi Huang could be selected as fielders. Further research may continue to draw upon the data differences and abilities that cannot be quantified, and to provide a more accurate and well-rounded prediction model for CPBL.

    第壹章 緒論 1 第一節 研究背景與動機 1 第二節 研究目的 2 第三節 研究問題 2 第四節 名詞釋義 3 第五節 研究範圍 4 第六節 研究限制 5 第貳章 文獻探討 6 第一節 美國國家棒球名人堂博物館發展歷程與現況 6 第二節 臺灣棒球名人堂發展趨勢與現況 13 第三節 美國國家棒球名人堂入選之相關研究 20 第四節 區別分析與羅吉斯迴歸於棒球運動之應用 40 第五節 本章總結 46 第參章 研究方法 48 第一節 研究流程 48 第二節 研究樣本的選取與預測模型之建構 51 第三節 棒球攻守數據的選取與介紹 52 第四節 資料處理與分析 65 第肆章 結果與討論 66 第一節 各預測變項的描述性統計 66 第二節 名人堂成員與非名人堂成員的差異分析 80 第三節 區別分析之名人堂入選預測模式 115 第四節 羅吉斯迴歸之名人堂入選預測模式 125 第五節 棒球名人堂入選預測模式探討及中華職棒選手入選預測 138 第伍章 結論與建議 147 第一節 結論 147 第二節 建議 152 參考文獻 153 附錄 156

    王翔 (2014,1月12日)。臺灣棒球名人堂協會成立,為未來籌設名人堂催生。Ettoday運動雲。取自https://sports.ettoday.net/news/
    中華職棒大聯盟全球資訊網 (2020)。球員點將錄。取自http://www.cpbl.com.tw/cpbl.html
    江昇暉 (2017)。排球勝負預測模式之研究-以世界男排聯賽為例 (未出版碩士論文)。國立臺灣師範大學,臺北市。
    林震岩 (2018)。多變量分析:SPSS的操作與應用。臺北市:智勝文化。
    曾文誠、盂峻瑋 (2004)。臺灣棒球王。臺北市:我識地球村。
    許倬勛 (2018,8月8日)。棒球名人堂落腳龍潭?名人堂協會不同調。自由體育。取自https://sports.ltn.com.tw/
    臺灣棒球名人堂 (2020)。關於我們:成立故事,緣起。取自 https://www.fhgh.com.tw/cht/aboutdel/%E6%88%90%E7%AB%8B%E6%95%85%E4%BA%8B/%E7%B7%A3%E8%B5%B7
    董森堡 (2011)。建構MLB球隊晉級季後賽之區別分析預測模式 (未出版碩士論文)。國立金門大學,金門縣。
    廖德修 (2016年12月17日)。陳潤波入選名人堂,郭源治意外落選。中時新聞網。 取自https://www.chinatimes.com/
    蔡鵑如 (2007)。名人堂,棒球的聖殿。臺北市:東觀國際。
    Andersen, T., & Croix, S. J. L. (1991). Customer racial discrimination in major league baseball. Economic Inquiry, 29(4), 665-677.
    BASEBALL REFERENCE (2020). Awards. Retrieved from https://www.baseball-reference.com/
    Baseball Writers' Association of America (BBWAA). (2020). National Baseball Hall of Fame and Museum .Retrieved from http://baseballhall.org/hall-famers/rules-election/bbwaa
    Beneventano, P., Berger, P. D., & Weinberg, B. D. (2012). Predicting run production and run prevention in baseball: the impact of Sabermetrics. International Journal of Business, Humanities and Technology, 2(4), 67-75.
    Cahilla, R. D., Bradya, J. W., Wincha, A. W., Ashea, R. P., & Sommersa, P. M. Cracking the WHIP: An Evaluation of Baseball’s Hall of Fame Pitchers. Journal of Student Research, 8(2), 18-23.
    Desser, A., Monks, J., & Robinson, M. (1999). Baseball Hall of Fame voting: A test of the customer discrimination hypothesis. Social Science Quarterly, 80(3), 591-603.
    Findlay, D. W., & Reid, C. E. (1997). Voting behavior, discrimination and the National Baseball Hall of Fame. Economic inquiry, 35(3), 562-578.
    Findlay, D. W., & Reid, C. E. (2002). A comparison of two voting models to forecast election into the National Baseball Hall of Fame. Managerial and Decision Economics, 23(3), 99-113.
    Grajkowske, A. (2008). Using Binary Logistic Regression to Predict Baseball Hall of Fame Admittance (Master's Thesis, The South Dakota School of Mines & Technology).Retrieved from https://citeseerx.ist.psu.edu/viewdoc/
    Hill, J. R., & Spellman, W. (1984). Pay discrimination in baseball: Data from the seventies. Industrial Relations: A Journal of Economy and Society, 23(1), 103-112.
    James, B. (1995). Whatever Happened to the Hall of Fame ? : Baseball, Cooperstown, and the Politics of Glory. NY : Simon & Schuster.
    Miceli, T. J., & Volz, B. D. (2012). Debating immortality: application of data envelopment analysis to voting for the Baseball Hall of Fame. Managerial and Decision Economics, 33(3), 177-188.
    National Baseball Hall of Fame (2020). Hall of Famers. Retrieved from https://baseballhall.org/hall-of-famers
    Ryan D. Cahilla, John W. Bradya, Alexander W. Wincha, Ryan P. Ashea & Paul M. Sommersa (2019). Cracking the WHIP: An Evaluation of Baseball’s Hall of Fame Pitchers. Journal of Student Research, 8(2), 18-23. DOI:https://doi.org/10.47611/jsr.v8i2.759.
    Witnauer, W. D., Rogers, R. G. & Saint Onge, J. M. (2007). Major league baseball career length in the 20th century. Population research and policy review, 26(4), 371-386.
    Zemler, K. (2013). A Statistical approach to predict future members of the Baseball Hall of Fame (Doctoral dissertation, Texas Woman’s University ). Retrieved from https://twu-ir.tdl.org/handle/11274/3596

    無法下載圖示 電子全文延後公開
    2026/09/30
    QR CODE