簡易檢索 / 詳目顯示

研究生: 楊富鈞
FU-CHUN, YANG
論文名稱: 高溫超導一階梯度計磁鬆弛系統的設計與製作
指導教授: 楊鴻昌
Yang, Hong-Chang
洪姮娥
Horng, Herng-Er
學位類別: 碩士
Master
系所名稱: 光電工程研究所
Graduate Institute of Electro-Optical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 41
中文關鍵詞: 梯度計磁鬆弛系統磁流體
論文種類: 學術論文
相關次數: 點閱:145下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本實驗主要是要架設可量測磁鬆弛訊號的磁鬆弛系統以及抗雜訊能力高的梯度計。此磁鬆弛系統的核心為杜瓦瓶,我們將梯度計放置於杜瓦瓶的真空夾層中,希望能以減少梯度計與樣品之間的距離而達到量測出更大的磁鬆弛訊號。
    梯度計的設計方面,將梯度計的bare SQUID改為梯度線圈的樣式,期望梯度計有更高的抗雜訊能力;以及,將梯度計的pick-up coil改為washer-type,希望增加梯度計的Aeff,以提升梯度計的靈敏度。
    樣品方面,首先選擇量測不同濃度的純磁流體,希望從中觀察出濃的磁流體相較於稀的磁流體有較強的磁鬆弛訊號以及較的relaxation time,並以此驗證所量測的訊號的真實性。接著量測anti-CRP和CRP混合後,由於抗原抗體的結合,使磁鬆弛訊號強度變強。

    摘要 第一章 緒論 ..............................................1 1-1前言 ............................................1 第二章 原理 ..............................................4 2-1 約瑟芬元件原理 ...................................4 2-2 直流式超導量子干涉元件.............................7 2-3 Magnetic Relaxation ..........................11 第三章 元件製程 ..........................................13 3-1 前言 ..........................................13 3-2 鍍膜系統........................................13 3-3 梯度計製作......................................14 3-4 樣品量測系統.....................................15 3-4-1 電性量測..................................15 3-4-2 雜訊量測 .................................16 第四章 元件特性分析 .......................................19 4-1 前言...........................................19 4-2 梯度計圖形設計與改良..............................19 4-3 SQUID電性分析...................................23 4-3-1 在樣品背面繞線圈通電流產生磁場 ...............23 4-3-2 在樣品正面通電流產生磁場 ....................24 4-4 SQUID雜訊量測 ..................................25 4-4-1 屏蔽下的雜訊...............................25 4-4-2 無屏蔽下的雜訊.............................26 第五章 磁鬆弛系統.........................................27 5-1 梯度計應用於磁鬆弛系統...........................27 5-1-1 系統介紹 .................................27 5-1-2 電性量測..................................31 5-1-3 雜訊量測..................................33 5-2 磁鬆弛訊號實驗結果分析............................35 第六章 結論..............................................38 參考文獻 ..................................................39

    [1] I. Rabias, H. Pratsinis, G. Drossopoulou, M. Fardis,
    T. Maris,N. Boukos,N. Tsotakos, D. Kletsas,
    E. Tsilibary, and G. Papavassiliou, Biomicrofluidics1,
    044104 (2007)
    [2] N. Noginova, T. Weaver, M. King, A. B. Bourlinos,
    E. P. Giannelis,and V. A. Atsarkin,
    J. Appl. Phys. 101, 09C102 (2007).
    [3] Q. Zeng, I. Baker, J. A. Loudis, Y. Liao, P. J. Hoopes,
    and J. B. Weaver,Appl. Phys. Lett. 90, 233112 (2007).
    [4] S. Y. Yang, J. S. Sun, C. H. Liu, Y. H. Tsuang,
    L. T. Chen, C. Y. Hong,H. C. Yang, and H. E. Horng,
    Artif. Organs 32, 195(2008).
    [5] M. Lewin, N. Carlesso, C. H. Tung, X. W. Tang, D. Cory,
    D. T. Scadden, and R. Weissleder, Nat. Biotechnol.
    18, 410–414(2000).
    [6] S. Tanaka, H. Ota, Y. Kondo, Y. Tamaki, S. Kobayashi,
    and S. Noguchi,IEEE Trans. Appl. Supercond. 13, 377
    (2003).
    [7] R. KÖtitz, W. Weitschies, L. Trahms, W. Brewer,
    and W. Semmler, J. Magn. Magn. Mater. 194, 62 (1999).
    [8] S. K. Lee, W. R. Myers, H. L. Grossman, H.-M. Cho, Y. R. Chemla,
    and J. Clarke, Appl. Phys. Lett. 81, 3094 (2002).
    [9] K. Enpuku, T. Minotani, T. Gima, Y. Kuroki, Y. Itoh,
    M. Yamashita, Y. Katakura, and S. Kuhara,
    Jpn. J. Appl. Phys., Part 2 38, L1102 (1999).
    [10] H. E. Horng, S. Y. Yang, C.-Y. Hong, C. M. Liu,
    P. S. Tsai,H. C.Yang, and C. C. Wu,
    Appl. Phys. Lett. 88, 252506 (2006).
    [11] C. Y. Hong, C. C. Wu, Y. C. Chiu, S. Y. Yang,
    H. E. Horng, and H.C.Yang,
    Appl. Phys. Lett. 88, 212512 (2006).
    [12] J. J. Chieh, S.-Y. Yang, H. E. Horng, Z. F. Jian,
    W. C. Wang, H.C. Yang, and C.-Y. Hong,
    J. Appl. Phys. 103, 17403 (2008).
    [13] H. Lee, E. Sun, D. Ham, and R. Weissleder,
    Nat. Med. 14, 869 (2008).
    [14] H. Shao, C. Min, D. Issadore, M. Liong, T. J. Yoon,
    R. Weissleder,and H. Lee, Theranostics 2, 55 (2012).
    [15] H. Lee, T. J. Yoon, J. L. Figueiredo, F. K. Swirski,
    and R. Weissleder, Proc. Natl. Acad. Sci. U.S.A. 106,
    12459 (2009).
    [16] S. H. Liao, H. C. Yang, H. E. Horng, and S. Y. Yang,
    Supercond. Sci.Technol. 22, 025003 (2009).
    [17] M. J. Chen, S. H. Liao, H. C. Yang, H. Y. Lee,
    Y. J. Liu,H. H.Chen, H. E. Horng, and S. Y. Yang,
    J. Appl. Phys. 110, 123911 (2011).
    [18] L. Tu, Y. Jing, Y. Li, and J. P. Wang, “Real-time
    measurement of Brownian relaxation of magnetic
    nanoparticles by a mixing-frequency method,”
    Appl. Phys. Lett., vol. 98, p. 213702, May 2011.
    [19] L. Tu, Y. Feng, T. Klein, W. Wang, and J. P. Wang,
    “Measurement of brownian relaxation of magnetic
    nanoparticles by a multi-tone mixingfrequencymethod,”
    IEEE Trans Magn., vol. 48, no. 11,
    pp. 3513–3516, Nov. 2012.
    [20] H. Krause, N.Wolters, Y. Zhang, and A. Offenhausser,
    “Magnetic particle detection by frequency mixing for
    immunoassay applications,”
    J.Magn. Magn. Mater., vol. 311, p. 436, 2007.
    [21] P. Nikitin, P. Vetoshko, and T. Ksenevich,
    “New type of biosensor based on magnetic nanoparticle
    detection,”
    J. Magn. Magn. Mater., vol. 311, p. 445, 2007.
    [22] J. Lenz, “A review of magnetic sensors,”
    Proc. IEEE, vol. 78,pp. 973–989, Jun. 1990.
    [23] F. Ludwig, A. Guillaume, M. Schilling, N. Frickel, and
    A. M. Schimidt, “Determination of core and hydrodynamic
    size distributions of CoFe2O4 nanoparticle suspensions
    using ac susceptibility measurements,” J. Appl. Phys.,
    vol. 108, p. 033918, 2010.
    [24] C.-Y. Hong, C. C. Wu, Y. C. Chiu, S. Y. Yang,
    H. E. Horng, and H.C. Yang, “Magnetic susceptibility
    reduction method for magnetically labeled immunoassay,”
    Appl. Phys. Lett., vol. 88, p. 212512, 2006.
    [25] A. M. Rauwerdink and J. B. Weaver, “Measurement of
    molecular binding using the Brownian motion of magnetic
    nanoparticle probes,”
    Appl. Phys. Lett., vol. 96, p. 033702, 2010.
    [26] K. Park, T. Harrah, E. B. Goldberg, R. P. Guertin,
    and S. Sonkusale,“Multiplexed sensing based on
    Brownian relaxation of magnetic nanoparticles using a
    compact AC susceptometer,”
    Nanotechnology, p. 085501, 2011.
    [27] K. Enpuku, T. Tanaka, Y. Tamai, F. Dang, N. Enomoto,
    J. Hojo,H.Kanzaki, and N. Usuki, “Liquid phase
    immunoassay using AC susceptibility measurement of
    magnetic markers,”
    JPN. J. Appl.Phys., vol. 47, p. 5859, 2008.
    [28] R. M. Ferguson, K. R. Minard, A. P. Khandhar,
    and K. M. Krishnan,“Optimizing magnetite nanoparticles
    for mass sensitivity in magnetic particle imaging,”
    Med. Phys., vol. 38, no. 3,pp. 1619–1625, Mar. 2011.
    [29] ”Possible New Effects in Super Conductive Tunneling”
    B.D.Josephon, Phys.Lett. 1, 251 (1962).
    [30] Pegrum, et al, de Gruyter, Berlin, Germany (1980) 5335.
    [31] 許晉瑋 國立臺灣師範大學101年論文
    [32] 磁性奈米粒子於生物醫學上之應用 楊謝樂 物理雙月刊(廿八卷四期)
    2006 年8 月
    [33]教育部卓越計畫子計畫:『多通道高溫超導SQUID 磁共振射影』
    由民國91年4月1日起為期四年。
    [34] K. Char, M. S. Colclough, L. P. Lee, and G. Zaharchuk,
    Appl. Phys. Lett. 59, 2177 (1991).
    [35]邱威祥 國立臺灣師範大學101年論文
    [36] SeungKyun Lee, W. R. Myers, H. L. Grossman, H.-M. Cho,
    Y. R. Chemla, and John Clarkea)
    Department of Physics, University of California,
    Berkeley,California 94720 and Materials Sciences
    Division, Lawrence Berkeley National Laboratory,
    Berkeley, California 94720
    ~Received 15 July 2002; accepted 21 August 2002!
    2002 American Institute of Physics.

    無法下載圖示 本全文未授權公開
    QR CODE