研究生: |
蔡明男 Tsai, Min-Nan |
---|---|
論文名稱: |
On the use of exponential analysis in science and industry On the use of exponential analysis in science and industry |
指導教授: |
李忠謀
Lee, Chung-Mou Guyt, Annie Cuyt, Annie 李文欣 Lee, Wen-Shin |
學位類別: |
博士 Doctor |
系所名稱: |
資訊工程學系 Department of Computer Science and Information Engineering |
論文出版年: | 2019 |
畢業學年度: | 107 |
語文別: | 英文 |
論文頁數: | 154 |
中文關鍵詞: | 指數分析 、稀疏多項式差值法 、指數訊號處埋 、Prony方法 、Pade逼近法 |
英文關鍵詞: | Exponential analysis, Sparse polynomial interpolation, Exponential signal processing, Prony's method, Pade approximation |
DOI URL: | http://doi.org/10.6345/DIS.NTNU.DCSIE.001.2019.B02 |
論文種類: | 學術論文 |
相關次數: | 點閱:104 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
指數型態數據分析在許多科學和工程領域中佔有關鍵的地位,例如電子學,力學,流體力學,半導體物理學,化學,生物物理學,醫學成像等領域。我們研究在實際應用中,所面對有關指數型態數據分析的挑戰問題。我們的目標,是用最先進的數學成果,來處理科學與工程中的難題。
指數型態數據分析中的Prony方法,可以追溯在18世紀。這個經典的方法,將指數插值問題轉化為一個解根的問題,以及一個解一組線性方程式的問題。Prony 方法,可以從一組等距取樣的時間序列求值,解出一個背後是指數函數訊息中的頻率、震幅、相位差、阻尼因子。理論上,Prony 方法可以高分辨率的頻率資料。然而,在實際運用上,各種數值上的問題,限制了Prony方法的應用。即使到了20世紀運算效能隨著電腦科技大幅改進之際,基於Prony的方法並沒有像基於傅立葉的方法那般 被廣泛的應用。
近年來,Prony方法再度引起興趣。有一些最近的研究成果,是基於Prony方法與數值逼近理論領域中Pad ́e逼近法、以及符號運算中稀疏多項式插值的相關性。本論文旨在研究如何在一些實際的應用中,使用這些先進的指數分析技術。我們首先調查探討使用的指數訊號模型分析的不同應用領域。然後我們介紹一種短時距的Prony方法,用於檢測可能由電力系統產生的瞬態信號。我們還透過Prony方法和Pad ́e逼近法的相關性, 利用Pad ́e逼近理論中的一些收斂定理,來檢測信號中微弱與群聚的分量。這項技術的實用性,展現在電動機電流特徵分析(MCSA)、磁共振波譜 (MRS)、螢光生命週期成像(FLIM)以及磁共振成像(MRI) 的相關問題應用。最後,在數位浮水印的研究,我們提出了一種脆弱型數位浮水印方 案,可以用客觀的數學條件來驗證所有權,而且無需儲存原始浮水印資料。我們提出的浮水印內容,是基於跟指數分析中 Prony 方法習習相關、符號運算中的稀疏多項式差值。
Exponential analysis plays a crucial role in many scientific and engineering fields, such as electronics, mechanics, fluid mechanics, semi-conductor physics, chem- istry, biophysics, medical imaging, and so on. We investigate challenges related to exponential analysis from practical applications. Our goal is to use recent mathematical results to tackle di cult problems that may arise in science and engineering.
In exponential analysis, Prony’s method can be traced back to the eighteenth century. This classic method turns an exponential interpolation problem into a root-finding problem and the solution of a set of linear equations. From a set of uniformly sampled time series data, it can extract frequencies, amplitudes, phases, and damping factors in a signal that is a sum of exponentials. Theoret- ically, Prony’s method can deliver high-resolution frequency information. How- ever, in practice, various numerical issues have limited the application of Prony’s method. Ever since the rise of the digital computer in the twentieth century, Prony-based methods have not been implemented as widely as Fourier-based methods.
In recent years, though, there has been a resurgence of interest in Prony’s method. Some of the latest developments are based on the connections between Prony’s method and Pad ́e approximation from numerical approximation theory or sparse polynomial interpolation from computer algebra. This research aims to implement the latest developments in exponential analysis to some practical applications. We first survey exponential models in di↵erent application do- mains. Then, we introduce a short-time Prony’s method to detect transient signals that may arise from a power system. For detecting faint and clustered components in a signal, through the connection between Prony’s method and Pad ́e approximation, we make use of some convergence theorems from Pad ́e ap- proximation theory. The practicality is illustrated in motor current signature analysis (MCSA) and magnetic resonance spectroscopy (MRS), as well as relax- ometry in fluorescence lifetime imaging (FLIM) and magnetic resonance imaging (MRI). In digital watermarking, we present a fragile watermark scheme that can authenticate ownership by a mathematical criterion without storing the origi- nal watermark. The contents of our proposed fragile watermarks is based on sparse polynomial interpolation from computer algebra, which is closely related to Prony’s method in exponential analysis.
Chapter 1
References
[1] B. G. R. De Prony, “Essai éxperimental et analytique: sur les lois de la dilatabilité de fluides élastique et sur celles de la force expansive de la vapeur de l’alkool,a différentes températures,” Journal de l’école polytechnique, vol. 1, no. 22, pp. 24–76, 1795.
[2] Y. Hua and T. K. Sarkar, “Matrix pencil method for estimating parameters of exponentially damped/undamped sinusoids in noise,” IEEE Transactions on Acoustics, Speech, and Signal Processing, vol. 38, no. 5, pp. 814–824, 1990.
[3] W. Thomson and M. Fenger, “Current signature analysis to detect induction motor faults,” Industry Applications Magazine, IEEE, vol. 7, no. 4, pp. 26–34, 2001.
[4] C. Pezzani, P. Donolo, G. Bossio, M. Donolo, A. Guzman, and S. Zocholl, “Detecting broken rotor bars with zero-setting protection,” in Industrial Commercial Power Systems Technical Conference (I CPS), 2012 IEEE/IAS 48th, 2012, pp. 1–12.
[5] R. McCoy, P. Albrecht, J. Appiarius, and E. Owen, “Improved motors for utility applications. volume 1. industry assessment study: update and analysis. final report,” General Electric Co., Schenectady, NY (USA), Tech. Rep., 1985.
[6] O. Thorsen and M. Dalva, “A survey of faults on induction motors in offshore oil industry, petrochemical industry, gas terminals, and oil refineries,” Industry Applications, IEEE Transactions on, vol. 31, no. 5, pp. 1186–1196, 1995.
[7] M. Akar, “Detection of rotor bar faults in field oriented controlled induction motors,” JOURNAL OF POWER ELECTRONICS, vol. 12, no. 6, pp. 982–991, 2012.
[8] H. Douglas, P. Pillay, and A. Ziarani, “Detection of broken rotor bars in induction motors using wavelet analysis,” in Electric Machines and Drives Conference, 2003. IEMDC’03. IEEE International, vol. 2. IEEE, 2003, pp. 923–928.
[9] S. Chen and R. Zivanovic, “A novel high-resolution technique for induction machine broken bar detection,” in Power Engineering Conference, 2007. AUPEC 2007. Australasian Universities. IEEE, 2007, pp. 1–5.
[10] S. Chen and R. Živanovic, “Estimation of frequency components in stator current for the detection of broken rotor bars in induction machines,” Measurement, vol. 43, no. 7, pp. 887–900, 2010.
[11] M. El Hachemi Benbouzid, “A review of induction motors signature analysis as a medium for faults detection,” Industrial Electronics, IEEE Transactions on, vol. 47, no. 5, pp. 984–993, 2000.
[12] M. Benbouzid and G. Kliman, “What stator current processingbased technique to use for induction motor rotor faults diagnosis?” Energy Conversion, IEEE Transactions on, vol. 18, no. 2, pp. 238–244, 2003.
[13] M. R. Mehrjou, N. Mariun, M. H. Marhaban, and N. Misron, “Rotor fault condition monitoring techniques for squirrel-cage induction machine—a review,” Mechanical Systems and Signal Processing, vol. 25, no. 8, pp. 2827–2848, 2011.
[14] P. Zhang, Y. Du, T. Habetler, and B. Lu, “A survey of condition monitoring and protection methods for medium-voltage induction motors,” Industry Applications, IEEE Transactions on, vol. 47, no. 1, pp. 34–46, 2011.
[15] Y.-H. Kim, Y.-W. Youn, D.-H. Hwang, J.-H. Sun, and D.-S. Kang, “High-resolution parameter estimation method to identify broken rotor bar faults in induction motors,” Industrial Electronics, IEEE Transactions on, vol. 60, no. 9, pp. 4103– 4117, 2013.
[16] J. Cusido, L. Romeral, J. Ortega, J. Rosero, and A. Garcia Espinosa, “Fault detection in induction machines using power spectral density in wavelet decomposition,” Industrial Electronics, IEEE Transactions on, vol. 55, no. 2, pp. 633–643, 2008.
[17] B. M. Ebrahimi, J. Faiz, S. Lotfi-fard, and P. Pillay, “Novel indices for broken rotor bars fault diagnosis in induction motors using wavelet transform,” Mechanical Systems and Signal Processing, vol. 30, no. 0, pp. 131 – 145, 2012. [Online]. Available: http://www.sciencedirect.com/science/article/pii/ S0888327012000271
[18] S. Chen and R. Živanovic, “Modelling and simulation of stator and rotor fault conditions in induction machines for testing fault diagnostic techniques,” European Transactions on Electrical Power, vol. 20, no. 5, pp. 611–629, 2010.
[19] M. Benbouzid, M. Vieira, and C. Theys, “Induction motors’ faults detection and localization using stator current advanced signal processing techniques,” Power Electronics, IEEE Transactions on, vol. 14, no. 1, pp. 14–22, 1999.
[20] “What are seismic surveys?” [Online]. Available: http://mines. industry.qld.gov.au/geoscience/what-are-seismic-surveys.htm
[21] Y. Hao, M. B. Magnani, K. McIntosh, B. Waldron, and L. Guo, “Quaternary deformation along the meeman-shelby fault near memphis, tennessee, imaged by high-resolution marine and land seismic reflection profiles,” Tectonics, 2013. [Online]. Available: http://dx.doi.org/10.1002/tect.20042
[22] Ö. Yilmaz and S. M. Doherty, Seismic data processing. Society of Exploration Geophysicists Tulsa, 1987, vol. 2.
[23] P. Kearey, M. Brooks, and I. Hill, An introduction to geophysical exploration. John Wiley & Sons, 2013.
[24] J. Guyer, An Introduction to Seismic Procedures for Geophysical Exploration. Amazon Digital Services LLC - Kdp Print Us, 2018. [Online]. Available: https://books.google.com.tw/books? id=CgEuugEACAAJ
[25] A. Asghar, “Processing and interpretation of multichannel seismic data from isfjorden, svalbard,” Master’s thesis, The University of Bergen, 2011.
[26] J. P. Castagna and S. Sun, “Comparison of spectral decomposition methods,” first break, vol. 24, no. 3, 2006.
[27] S. Sinha, P. S. Routh, P. D. Anno, and J. P. Castagna, “Spectral decomposition of seismic data with continuous-wavelet transform,” Geophysics, vol. 70, no. 6, pp. P19–P25, 2005.
[28] G. M. Mitrofanov and V. I. Priimenko, “Prony filtration of seismic data: theoretical background,” Revista Brasileira de Geofísica, vol. 29, no. 4, 2011.
[29] A. Chakraborty and D. Okaya, “Frequency-time decomposition of seismic data using wavelet-based methods,” Geophysics, vol. 60, no. 6, pp. 1906–1916, 1995.
[30] J. P. Castagna, S. Sun, and R. W. Siegfried, “Instantaneous spectral analysis: Detection of low-frequency shadows associated with hydrocarbons,” The Leading Edge, vol. 22, no. 2, pp. 120–127, 2003.
[31] S. Nelson, “Magnetic resonance spectroscopic imaging,” Engineering in Medicine and Biology Magazine, IEEE, vol. 23, no. 5, pp. 30–39, 2004.
[32] D. Soares and M. Law, “Magnetic resonance spectroscopy of the brain: review of metabolites and clinical applications,” Clinical radiology, vol. 64, no. 1, pp. 12–21, 2009.
[33] J.-B. Poullet, “Quantification and classification of magnetic resonance spectroscopic data for brain tumor diagnosis,” Ph.D. dissertation, PhD Thesis. Leuven, Belgium, 2008.
[34] H. M. Nguyen, “Towards high-resolution magnetic resonance spectroscopic imaging: spatiotemporal denoising and echo-time selection,” Ph.D. dissertation, University of Illinois at Urbana- Champaign, 2 2012.
[35] D. M. Sima, A. C. Sava, and S. Van Huffel, “Adaptive alternating minimization for fitting magnetic resonance spectroscopic imaging signals,” in Recent Advances in Optimization and its Applications in Engineering. Springer, 2010, pp. 511–520.
[36] A. Horská and P. B. Barker, “Imaging of brain tumors: Mr spectroscopy and metabolic imaging,” Neuroimaging Clinics of North America, vol. 20, no. 3, p. 293, 2010.
[37] Z. Chen, G. K. Gokeda, and Y. Yu, Introduction to Directionof- arrival Estimation. Artech House, 2010.
[38] R. Adve, “Direction of arrival estimation.” [Online]. Available: http://www.comm.utoronto.ca/~rsadve/Notes/DOA.pdf
[39] M. Rübsamen, “Advanced direction-of-arrival estimation and beamforming techniques for multiple antenna systems,” Ph.D. dissertation, TU Darmstadt, June 2011. [Online]. Available: http://tuprints.ulb.tu-darmstadt.de/2635/
[40] P. Yang, F. Yang, and Z.-P. Nie, “DOA estimation with subarray divided technique and interporlated esprit algorithm on a cylindrical conformal array antenna,” Progress In Electromagnetics Research, vol. 103, pp. 201–216, 2010.
[41] F. Wen and B. P. Ng, “A new DOA estimation approach using volterra signal model,” Multidimensional Systems and Signal Processing, pp. 1–18, 2013.
[42] S. Grandison, C. Roberts, and R. J. Morris, “The application of 3d zernike moments for the description of “model-free” molecular structure, functional motion, and structural reliability,” Journal of Computational Biology, vol. 16, no. 3, pp. 487–500, 2009.
[43] Q. Zhang, H. Abeida, M. Xue, W. Rowe, and J. Li, “Fast implementation of sparse iterative covariance-based estimation for array processing,” in Signals, Systems and Computers (ASILOMAR), 2011 Conference Record of the Forty Fifth Asilomar Conference on. IEEE, 2011, pp. 2031–2035.
[44] P. Stoica, P. Babu, and J. Li, “New method of sparse parameter estimation in separable models and its use for spectral analysis of irregularly sampled data,” Signal Processing, IEEE Transactions on, vol. 59, no. 1, pp. 35–47, 2011.
[45] P. Babu, “Spectral analysis of nonuniformly sampled data and applications,” Ph.D. dissertation, Uppsala University, 2012.
[46] Y. Hua and T. K. Sarkar, “Generalized pencil-of-function method for extracting poles of an EM system from its tran- sient response,” Antennas and Propagation, IEEE Transactions on, vol. 37, no. 2, pp. 229–234, 1989.
[47] N. Yilmazer, J. Koh, and T. K. Sarkar, “Utilization of a unitary transform for efficient computation in the matrix pencil method to find the direction of arrival,” Antennas and Propagation, IEEE Transactions on, vol. 54, no. 1, pp. 175–181, 2006.
[48] P. Callahan and M. De Graef, “Precipitate shape fitting and reconstruction by means of 3d zernike functions,” Modelling and Simulation in Materials Science and Engineering, vol. 20, no. 1, p. 015003, 2012.
[49] M. Novotni and R. Klein, “Shape retrieval using 3d zernike descriptors,” Computer-Aided Design, vol. 36, no. 11, pp. 1047– 1062, 2004.
[50] K. M. Hosny and M. A. Hafez, “An algorithm for fast computation of 3d zernike moments for volumetric images,” Mathematical Problems in Engineering, vol. 2012, 2012.
[51] L. Zhang, M. J. da Fonseca, and A. Ferreira, “Survey on 3d shape descriptors,” Technical Report FCT POSC/EIA/59938/2004, Tech. Rep., 2007.
[52] M. Novotni and R. Klein, “3d zernike descriptors for content based shape retrieval,” in Proceedings of the eighth ACM symposium on Solid modeling and applications. ACM, 2003, pp. 216–225.
[53] R. Millán, L. Dempere-Marco, J. M. Pozo, J. R. Cebral, and A. F. Frangi, “Morphological characterization of intracranial aneurysms using 3-d moment invariants,” Medical Imaging, IEEE Transactions on, vol. 26, no. 9, pp. 1270–1282, 2007.
[54] W. Qiuting and Y. Bing, “3d terrain matching algorithm and performance analysis based on 3d zernike moments,” in Computer Science and Software Engineering, 2008 International Conference on, vol. 6. IEEE, 2008, pp. 73–76.
[55] L. Sael, D. La, B. Li, R. Rustamov, and D. Kihara, “Rapid com- parison of properties on protein surface,” Proteins: Structure, Function, and Bioinformatics, vol. 73, no. 1, pp. 1–10, 2008.
[56] L. Sael, B. Li, D. La, Y. Fang, K. Ramani, R. Rustamov, and D. Kihara, “Fast protein tertiary structure retrieval based on global surface shape similarity,” Proteins: Structure, Function, and Bioinformatics, vol. 72, no. 4, pp. 1259–1273, 2008.
[57] F. Schleifenbaum, K. Elgass, M. Sackrow, K. Caesar, K. Berendzen, A. J. Meixner, and K. Harter, “Fluorescence intensity decay shape analysis microscopy (fidsam) for quantitative and sensitive live-cell imaging: a novel technique for fluorescence microscopy of endogenously expressed fusion-proteins,” Molecular plant, vol. 3, no. 3, pp. 555–562, 2010.
[58] R. Esposito, C. Altucci, and R. Velotta, “Analysis of simulated fluorescence intensities decays by a new maximum entropy method algorithm,” Journal of fluorescence, vol. 23, no. 1, pp. 203–211, 2013.
[59] F. Menezes, A. Fedorov, C. Baleizão, B. Valeur, and M. N. Berberan-Santos, “Methods for the analysis of complex fluorescence decays: sum of becquerel functions versus sum of exponentials,” Methods and Applications in Fluorescence, vol. 1, no. 1, p. 015002, 2013.
[60] K. Elgass, Novel Applications of Fluorescence Decay Analysis in Living Tissue at Single Cell Level. Rhombos-Verlag, 2010. Chapter 2 Atricle Reference
[1] Z. Bajzer, A.C. Myers, S.S. Sedarous, and F.G. Prendergast. Pad´e-Laplace method for analysis of fluorescence intensity decay. Biophys J., 56(1):79–93, 1989.
[2] A. Cuyt, W.-s. Lee, G. Lo Bianco, and M.-n. Tsai. How to pick up faint components in exponential analysis. Technical report, Universiteit Antwerpen, 2016.
[3] P. Henrici. Applied and computational complex analysis I. JohnWiley & Sons, New York, 1974.
[4] Y. Hua and T.K. Sarkar. Matrix pencil method for estimating parameters of exponentially damped/undamped sinusoids in noise. IEEE Trans. Acoust. Speech Signal Process., 38:814–824, 1990.
[5] E. Kaltofen, W.-s. Lee, and A.A. Lobo. Early termination in Ben-Or/Tiwari sparse interpolation and a hybrid of Zippel’s algorithm. In Proceedings of the 2000 International Symposium on Symbolic and Algebraic Computation, 192–201, ACM Press, New York, NY, USA, 2000.
[6] L. Lovisolo, E.A.B. da Silva, M.A.M. Rodrigues, and P.S.R. Diniz. Efficient coherent adaptive representations of monitored electric signals in power systems using damped sinusoids. IEEE Trans. Signal Proc., 53(10):3831–3846, 2005.
[7] R. de Prony. Essai exp´erimental et analytique sur les lois de la dilatabilit´e des fluides ´elastiques et sur celles de la force expansive de la vapeur de l’eau et de la vapeur de l’alkool, `a diff´erentes temp´eratures. J. Ec. Poly., 1:24–76, 1795.
[8] R. Roy and T. Kailath. ESPRIT-estimation of signal parameters via rotational invariance techniques. IEEE Trans. Acoustics, Speech and Signal Proc., 37(7):984–995, 1989.
[9] R.O. Schmidt. Multiple emitter location and signal parameter estimation. IEEE Trans. Antennas and Propagation, AP-34(3):276–280, 1986. Chapter 2 Background Information Reference
[1] G. Szwoch, M. Kulesza, and A. Czyzewski, “Transient detection for speech coding applications,” International Journal of Computer Science and Network Security, vol. 6, no. 12, pp. 320–325, 2006.
[2] T. Gerkmann, M. Krawczyk-Becker, and J. Le Roux, “Phase processing for single-channel speech enhancement: History and recent advances,” IEEE Signal Processing Magazine, vol. 32, no. 2, pp. 55–66, 2015.
[3] D. Dov, R. Talmon, I. Cohen, D. Dov, R. Talmon, and I. Cohen, “Kernel method for voice activity detection in the presence of transients,” IEEE/ACM Transactions on Audio, Speech and Language Processing (TASLP), vol. 24, no. 12, pp. 2313–2326, 2016.
[4] D. Wang and J. Chen, “Supervised speech separation based on deep learning: An overview,” IEEE/ACM Transactions on Audio, Speech, and Language Processing, 2018.
[5] S. C. Bradford, “Time-frequency analysis of systems with changing dynamic properties,” 2006.
[6] T. E. Corporation, “Dynamic pipeline simulation.” [Online]. Available: http://www.toyo-eng.com/jp/en/products/ analysis/pipe/
[7] M. S. Ghidaoui, M. Zhao, D. A. McInnis, and D. H. Axworthy, “A review of water hammer theory and practice,” Applied Mechanics Reviews, vol. 58, no. 1, pp. 49–76, 2005.
[8] V. L. Streeter, “Unsteady flow calculations by numerical methods,” Journal of Basic Engineering, vol. 94, no. 2, pp. 457–465, 1972.
[9] A. Bergant, A. R. Simpson, and A. S. Tijsseling, “Water hammer with column separation: A historical review,” Journal of fluids and structures, vol. 22, no. 2, pp. 135–171, 2006.
[10] R. Li, H. Ninokata, and M. Mori, “A numerical study of impact force caused by liquid droplet impingement onto a rigid wall,” Progress in Nuclear Energy, vol. 53, no. 7, pp. 881–885, 2011.
[11] P. Tazraei and A. Riasi, “Quasi-two-dimensional numerical analysis of fast transient flows considering non-newtonian effects,” Journal of Fluids Engineering, vol. 138, no. 1, p. 011203, 2016.
[12] X. Long, H. Cheng, B. Ji, R. E. Arndt, and X. Peng, “Large eddy simulation and euler–lagrangian coupling investigation of the transient cavitating turbulent flow around a twisted hydrofoil,” International Journal of Multiphase Flow, vol. 100, pp. 41–56, 2018.
[13] T. P. Exarchos, A. T. Tzallas, D. I. Fotiadis, S. Konitsiotis, and S. Giannopoulos, “Eeg transient event detection and classification using association rules,” IEEE Transactions on Information Technology in Biomedicine, vol. 10, no. 3, pp. 451–457, 2006.
[14] “Electroencephalography.” [Online]. Available: https://en. wikipedia.org/wiki/Electroencephalography
[15] A. T. Tzallas, M. G. Tsipouras, and D. I. Fotiadis, “Epileptic seizure detection in eegs using time–frequency analysis,” IEEE transactions on information technology in biomedicine, vol. 13, no. 5, pp. 703–710, 2009.
[16] B. Noureddin, P. D. Lawrence, and G. E. Birch, “Timefrequency analysis of eye blinks and saccades in eog for eeg artifact removal,” in Neural Engineering, 2007. CNE’07. 3rd International IEEE/EMBS Conference on. IEEE, 2007, pp. 564–567.
[17] H. Goelz, R. D. Jones, and P. J. Bones, “Wavelet analysis of transient biomedical signals and its application to detection of epileptiform activity in the eeg,” Clinical electroencephalography, vol. 31, no. 4, pp. 181–191, 2000.
[18] H. Adeli, Z. Zhou, and N. Dadmehr, “Analysis of eeg records in an epileptic patient using wavelet transform,” Journal of neuroscience methods, vol. 123, no. 1, pp. 69–87, 2003.
[19] V. Krishnaveni, S. Jayaraman, S. Aravind, V. Hariharasudhan, and K. Ramadoss, “Automatic identification and removal of ocular artifacts from eeg using wavelet transform,” Measurement science review, vol. 6, no. 4, pp. 45–57, 2006.
[20] M. Sharma, A. Dhere, R. B. Pachori, and U. R. Acharya, “An automatic detection of focal eeg signals using new class of time– frequency localized orthogonal wavelet filter banks,” Knowledge- Based Systems, vol. 118, pp. 217–227, 2017.
[21] M. K. Islam, A. Rastegarnia, and Z. Yang, “Methods for artifact detection and removal from scalp eeg: A review,” Neurophysiologie Clinique/Clinical Neurophysiology, vol. 46, no. 4-5, pp. 287–305, 2016.
[22] A. Jafarifarmand and M. A. Badamchizadeh, “Artifacts removal in eeg signal using a new neural network enhanced adaptive filter,” Neurocomputing, vol. 103, pp. 222–231, 2013.
[23] X. Song, Z. Sahinoglu, and J. Guo, “Transient disturbance detection for power systems with a general likelihood ratio test,” in 2013 IEEE International Conference on Acoustics, Speech and Signal Processing. IEEE, 2013, pp. 2839–2843.
[24] J. Seymour and T. Horsley, “The seven types of power problems,” APC, USA, 2005.
[25] Ieee recommended practice for monitoring electric power quality. [Online]. Available: https://standards.ieee.org/findstds/ standard/1159-2009.html
[26] J. Barros, M. Apraiz, and R. I. Diego, “Review of signal processing techniques for detection of transient disturbances in voltage supply systems,” in Instrumentation and Measurement Technology Conference (I2MTC), 2013 IEEE International. IEEE, 2013, pp. 450–455.
[27] O. P. Mahela, A. G. Shaik, and N. Gupta, “A critical review of detection and classification of power quality events,” Renewable and Sustainable Energy Reviews, vol. 41, pp. 495–505, 2015.
[28] K. Chen, C. Huang, and J. He, “Fault detection, classification and location for transmission lines and distribution systems: a review on the methods,” High voltage, vol. 1, no. 1, pp. 25–33, 2016.
[29] L. Lovisolo, E. A. da Silva, M. A. Rodrigues, and P. S. Diniz, “Efficient coherent adaptive representations of monitored electric signals in power systems using damped sinusoids,” IEEE Transactions on Signal Processing, vol. 53, no. 10, pp. 3831– 3846, 2005.
[30] A. Cuyt, W.-S. Lee, and M.-n. Tsai, “A short-time prony method for the detection of transients,” in ECCOMAS Congress 2016: VII European Congress on Computational Methods in Applied Sciences and Engineering, 510 June 2016, Crete, Greece/Papadrakakis, M.
[edit.]; et al., 2016. Chapter 3 Article Reference
[1] M. Akar , Detection of rotor bar faults in field oriented controlled induction motors, J. Power Electron. 12 (6) (2012) 982–991 .
[2] Z. Bajzer , A.C. Myers , S.S. Sedarous , F.G. Prendergast , Padé–Laplace method for analysis of fluorescence intensity decay, Biophys. J. 56 (1) (1989) 79–93 .
[3] P. Barone , On the distribution of poles of Padé approximants to the Z -transform of complex Gaussian white noise, J. Approx. Theory 132 (2) (2005) 224–240 .
[4] M. Bertero , P. Boccacci , E.R. Pike , F.R.S., on the recovery and resolution of exponential relaxation rates from experimental data: a singular-value analysis of the Laplace transform inversion in the presence of noise, Proc. R. Soc. Lond. A 383 (1784) (1982) 15–29 .
[5] D. Bessis , Padé approximations in noise filtering, J. Comput. Appl. Math. 66 (1–2) (1996) 85–88 .
[6] M. Björk , D. Zachariah , J. Kullberg , P. Stoica , A multicomponent T 2 relaxometry algorithm for myelin water imaging of the brain, Magn. Reson. Med. 75 (1) (2016) 390–402 .
[7] M. Briani , A. Cuyt , W.-s. Lee , V.P. Gerdt , W. Koepf , W.M. Seiler , W.M. Vorozhtsov , Sparse interpolation, the FFT algorithm and FIR filters, in: Proceedings of the Computer Algebra in Scientific Computing, Springer, Cham, Switzerland, 2017, pp. 27–39 .
[8] E.J. Candès , C. Fernandez-Granda , Towards a mathematical theory of super-resolution, Commun. Pure Appl. Math. 67 (6) (2014) 906–956 .
[9] S.J. Chapman , Electric Machinery Fundamentals, fourth ed., Tata McGraw-Hill Education, 2005 .
[10] A. Cuyt, W.-S. Lee, Smart data sampling and data reconstruction, US Patent 9,690,749, 2017. June 27, 2017.
[11] A. Cuyt, W.-S. Lee, Smart data sampling and data reconstruction, Patent PCT/EP2012/066204, EP 20,120,762,227. December 21, 2016.
[12] A. Cuyt, W.-S. Lee, How to get high resolution results from sparse and coarsely sampled data, 2017, ArXiv: 1710.09694
[math.NA].
[13] J. Gammel, P.R. Graves-Morris, Effect of Random Errors (noise) in the Terms of a Power Series on the Convergence of the Padé Approximants, The Institute of Physics, London, England, 1973, 132–133. Padé approximants.
[14] M. Giesbrecht , G. Labahn , W.-S. Lee , Symbolic-numeric sparse interpolation of multivariate polynomials, J. Symb. Comput. 44 (8) (2009) 943–959 .
[15] J. Gilewicz , M. Pindor , Padé approximants and noise: a case of geometric series, J. Comput. Appl. Math. 87 (2) (1997) 199–214 .
[16] J. Gilewicz , M. Pindor , Padé approximants and noise: rational functions, J. Comput. Appl. Math. 105 (1–2) (1999) 285–297 .
[17] P. Gonnet , S. Güttel , L.N. Trefethen , Robust Padé approximation via SVD, SIAM Rev. 55 (1) (2013) 101–117 .
[18] P. Henrici , Applied and computational complex analysis, in: Volume 1: Power Series-Integration-Conformal Mapping-Location of Zeros, John Wiley & Sons, New York, 1974 .
[19] Y. Hua , T.K. Sarkar , Matrix pencil method for estimating parameters of exponentially damped/undamped sinusoids in noise, IEEE Trans. Acoust. Speech Signal Process. 38 (5) (1990) 814–824 .
[20] O.L. Ibryaeva , V.M. Adukov , An algorithm for computing a Padé approximant with minimal degree denominator, J. Comput. Appl. Math. 237 (1) (2013) 529–541 .
[21] E. Kaltofen , W.-S. Lee , A .A . Lobo , Early termination in Ben-Or/Tiwari sparse interpolation and a hybrid of Zippel’s algorithm, in: C. Traverso (Ed.), Proceedings of the International Symposium on Symbolic and Algebraic Computation (ISSAC 20 0 0), ACM, New York, NY, USA, 20 0 0, pp. 192–201 .
[22] Y.-H. Kim , Y.-W. Youn , D.-H. Hwang , J.-H. Sun , D.-S. Kang , High-resolution parameter estimation method to identify broken rotor bar faults in induction motors, IEEE Trans. Ind. Electron. 60 (9) (2013) 4103–4117 .
[23] S.Y. Kung , K.S. Arun , D.V.B. Rao , State-space and singular-value decomposition-based approximation methods for the harmonic retrieval problem, J. Opt. Soc. Am. 73 (12) (1983) 1799–1811 .
[24] J. Nuttall , The convergence of Padé approximants of meromorphic functions, J. Math. Anal. Appl. 31 (1) (1970) 147–153 .
[25] H. Nyquist , Certain topics in telegraph transmission theory, Trans. Am. Ins. Electr. Eng. 47 (2) (1928) 617–644 .
[26] L. Perotti , T. Regimbau , D. Vrinceanu , D. Bessis , Identification of gravitational-wave bursts in high noise using Padé filtering, Phys. Rev. D 90 (2014) 124047 .
[27] V.F. Pisarenko , The retrieval of harmonics from a covariance function, Geophys. J. R. Astron. Soc. 33 (3) (1973) 347–366 .
[28] C. Pommerenke , Padé approximants and convergence in capacity, J. Math. Anal. Appl. 41 (3) (1973) 775–780 .
[29] R. de Prony , Essai expérimental et analytique sur les lois de la dilatabilité des fluides élastiques et sur celles de la force expansive de la vapeur de l’eau et de la vapeur de l’alkool, à différentes températures, J. de l’École Polytechnique 1 (1795) 24–76 .
[30] R. Roy , T. Kailath , ESPRIT-estimation of signal parameters via rotational invariance techniques, IEEE Trans. Acousti. Speech Signal Process. 37 (7) (1989) 984–995 .
[31] R. Schmidt , Multiple emitter location and signal parameter estimation, IEEE Trans. Antennas Propag. 34 (3) (1986) 276–280 .
[32] C.E. Shannon , Communication in the presence of noise, Proc. IRE 37 (1) (1949) 10–21 .
[33] B. Xu , L. Sun , L. Xu , G. Xu , Improvement of the Hilbert method via ESPRIT for detecting rotor fault in induction motors at low slip, IEEE Trans. Energy Convers. 28 (1) (2013) 225–233 .
[34] Y. Zhang , A. Cuyt , W.-s. Lee , G. Lo Bianco , G. Wu , Y. Chen , D.D. Li , Towards unsupervised fluorescence lifetime imaging using low-dimensional variable projection, Opt. Express 24 (23) (2016) 26777–26791 . Chapter 3 Background Information
[1] Wikipedia, “Induction motor.” [Online]. Available: https: //en.wikipedia.org/wiki/Induction_motor
[2] ——, “Stator.” [Online]. Available: https://en.wikipedia.org/ wiki/Stator
[3] C. Pezzani, P. Donolo, G. Bossio, M. Donolo, A. Guzman, and S. Zocholl, “Detecting broken rotor bars with zero-setting protection,” in Industrial Commercial Power Systems Technical Conference (I CPS), 2012 IEEE/IAS 48th, 2012, pp. 1–12.
[4] R. McCoy, P. Albrecht, J. Appiarius, and E. Owen, “Improved motors for utility applications. volume 1. industry assessment study: update and analysis. final report,” General Electric Co., Schenectady, NY (USA), Tech. Rep., 1985.
[5] O. Thorsen and M. Dalva, “A survey of faults on induction motors in offshore oil industry, petrochemical industry, gas terminals, and oil refineries,” Industry Applications, IEEE Transactions on, vol. 31, no. 5, pp. 1186–1196, 1995.
[6] F. Filippetti, M. Martelli, G. Franceschini, and C. Tassoni, “Development of expert system knowledge base to on-line diagnosis of rotor electrical faults of induction motors,” in Industry Applications Society Annual Meeting, 1992., Conference Record of the 1992 IEEE. IEEE, 1992, pp. 92–99.
[7] F. Filippetti, G. Franceschini, C. Tassoni, and P. Vas, “Ai techniques in induction machines diagnosis including the speed ripple effect,” Industry Applications, IEEE Transactions on, vol. 34, no. 1, pp. 98–108, 1998.
[8] S. Chapman, Electric machinery fundamentals. Tata McGraw- Hill Education, 2005.
[9] M. Benbouzid, M. Vieira, and C. Theys, “Induction motors’ faults detection and localization using stator current advanced signal processing techniques,” Power Electronics, IEEE Transactions on, vol. 14, no. 1, pp. 14–22, 1999.
[10] M. Benbouzid and G. Kliman, “What stator current processingbased technique to use for induction motor rotor faults diagnosis?” Energy Conversion, IEEE Transactions on, vol. 18, no. 2, pp. 238–244, 2003.
[11] M. R. Mehrjou, N. Mariun, M. H. Marhaban, and N. Misron, “Rotor fault condition monitoring techniques for squirrel-cage induction machineââCn”a review,” Mechanical Systems and Signal Processing, vol. 25, no. 8, pp. 2827 – 2848, 2011. [Online]. Available: http://www.sciencedirect.com/science/ article/pii/S0888327011002032
[12] P. Zhang, Y. Du, T. Habetler, and B. Lu, “A survey of condition monitoring and protection methods for medium-voltage induction motors,” Industry Applications, IEEE Transactions on, vol. 47, no. 1, pp. 34–46, 2011.
[13] J. Cusido, L. Romeral, J. Ortega, J. Rosero, and A. Garcia Espinosa, “Fault detection in induction machines using power spectral density in wavelet decomposition,” Industrial Electronics, IEEE Transactions on, vol. 55, no. 2, pp. 633–643, 2008.
[14] H. Douglas, P. Pillay, and A. Ziarani, “Detection of broken rotor bars in induction motors using wavelet analysis,” in Electric Machines and Drives Conference, 2003. IEMDC’03. IEEE International, vol. 2. IEEE, 2003, pp. 923–928.
[15] A. Bouzida, O. Touhami, R. Ibtiouen, A. Belouchrani, M. Fadel, and A. Rezzoug, “Fault diagnosis in industrial induction machines through discrete wavelet transform,” Industrial Electronics, IEEE Transactions on, vol. 58, no. 9, pp. 4385–4395, 2011.
[16] B. M. Ebrahimi, J. Faiz, S. Lotfi-fard, and P. Pillay, “Novel indices for broken rotor bars fault diagnosis in induction motors using wavelet transform,” Mechanical Systems and Signal Processing, vol. 30, no. 0, pp. 131 – 145, 2012. [Online]. Available: http://www.sciencedirect.com/science/article/pii/ S0888327012000271
[17] Y.-H. Kim, Y.-W. Youn, D.-H. Hwang, J.-H. Sun, and D.-S. Kang, “High-resolution parameter estimation method to iden- tify broken rotor bar faults in induction motors,” Industrial Electronics, IEEE Transactions on, vol. 60, no. 9, pp. 4103– 4117, 2013.
[18] F. Cupertino, E. De Vanna, L. Salvatore, and S. Stasi, “Comparison of spectral estimation techniques applied to induction motor broken bars detection,” in Diagnostics for Electric Machines, Power Electronics and Drives, 2003. SDEMPED 2003. 4th IEEE International Symposium on. IEEE, 2003, pp. 129– 134.
[19] A. Bracale, G. Carpinelli, L. Piegari, and P. Tricoli, “A high resolution method for on line diagnosis of induction motors faults,” in Power Tech, 2007 IEEE Lausanne. IEEE, 2007, pp. 994– 998.
[20] R. Puche-Panadero, M. Pineda-Sanchez, M. Riera-Guasp, J. Roger-Folch, E. Hurtado-Perez, and J. Perez-Cruz, “Improved resolution of the mcsa method via hilbert transform, enabling the diagnosis of rotor asymmetries at very low slip,” Energy Conversion, IEEE Transactions on, vol. 24, no. 1, pp. 52–59, 2009.
[21] S. Chen and R. Živanovic, “Modelling and simulation of stator and rotor fault conditions in induction machines for testing fault diagnostic techniques,” European Transactions on Electrical Power, vol. 20, no. 5, pp. 611–629, 2010.
[22] B. Xu, L. Sun, L. Xu, and G. Xu, “Improvement of the hilbert method via esprit for detecting rotor fault in induction motors at low slip,” Energy Conversion, IEEE Transactions on, vol. 28, no. 1, pp. 225–233, 2013.
[23] B. G. R. de Prony, “Essai éxperimental et analytique: sur les lois de la dilatabil- ité de fluides élastique et sur celles de la force expansive de la vapeur de l’alkool, à différentes températures.”,” de l’Ecole Polytechnique, vol. 1, pp. 24–76, 1795.
[24] F. B. Hildebrand, “Introduction to numerical analysis,” International Series in Pure and Applied Mathematics, New York: McGraw-Hill,| c1956, vol. 1, 1956.
[25] R. Zivanovic, P. Schegner, O. Seifert, and G. Pilz, “Identification of the resonant-grounded system parameters by evaluating fault measurement records,” Power Delivery, IEEE Transactions on, vol. 19, no. 3, pp. 1085–1090, 2004.
[26] S. Chen and R. Zivanovic, “A novel high-resolution technique for induction machine broken bar detection,” in Power Engineering Conference, 2007. AUPEC 2007. Australasian Universities. IEEE, 2007, pp. 1–5.
[27] S. Chen and R. Živanovic, “Estimation of frequency components in stator current for the detection of broken rotor bars in induction machines,” Measurement, vol. 43, no. 7, pp. 887 – 900, 2010. [Online]. Available: http://www.sciencedirect.com/ science/article/pii/S0263224110000631
[28] R. O. Schmidt, “Multiple emitter location and signal parameter estimation,” Antennas and Propagation, IEEE Transactions on, vol. 34, no. 3, pp. 276–280, 1986.
[29] Y. Hua and T. K. Sarkar, “Matrix pencil method for estimating parameters of exponentially damped/undamped sinusoids in noise,” Acoustics, Speech and Signal Processing, IEEE Transactions on, vol. 38, no. 5, pp. 814–824, 1990.
[30] G. H. Golub, P. Milanfar, and J. Varah, “A stable numerical method for inverting shape from moments,” SIAM Journal on Scientific Computing, vol. 21, no. 4, pp. 1222–1243, 1999.
[31] G. H. Golub and C. F. Van Loan, “Matrix computations. 1996,” Johns Hopkins University, Press, Baltimore, MD, USA, pp. 374–426, 1996.
[32] H. Nyquist, “Certain topics in telegraph transmission theory,” Trans. Am. Inst. Electr. Eng., vol. 47, no. 2, pp. 617–644, Apr. 1928.
[33] C. E. Shannon, “Communication in the presence of noise,” Proc. IRE, vol. 37, pp. 10–21, 1949.
[34] M. Ben-Or and P. Tiwari, “A deterministic algorithm for sparse multivariate polynomial interpolation,” in STOC ’88: Proceed- ings of the twentieth annual ACM symposium on Theory of computing. New York, NY, USA: ACM, 1988, pp. 301–309.
[35] P. Henrici, Applied and computational complex analysis I. New York: John Wiley & Sons, 1974.
[36] E. Kaltofen, W.-s. Lee, and A. A. Lobo, “Early termination in Ben-Or/Tiwari sparse interpolation and a hybrid of Zippel’s algorithm,” in Proceedings of the 2000 International Symposium on Symbolic and Algebraic Computation. New York, NY, USA: ACM, 2000, pp. 192–201.
[37] Y. Hua and T. K. Sarkar, “Matrix pencil method for estimating parameters of exponentially damped/undamped sinusoids in noise,” IEEE Trans. Acoust. Speech Signal Process., vol. 38, pp. 814–824, 1990.
[38] J. Nuttall, “The convergence of Padé approximants of meromorphic functions,” J. Math. Anal. Appl., vol. 31, pp. 147–153, 1970.
[39] C. Pommerenke, “Padé approximants and convergence in capacity,” J. Math. Anal. Appl., vol. 41, pp. 775–780, 1973.
[40] J. Gammel, “Effect of random errors (noise) in the terms of a power series on the convergence of the Padé approximants,” in Padé approximants, P. Graves-Morris, Ed., 1972, pp. 132–133.
[41] J. Gilewicz and M. Pindor, “Padé approximants and noise: a case of geometric series,” J. Comput. Appl. Math., vol. 87, pp. 199–214, 1997.
[42] ——, “Padé approximants and noise: rational functions,” J. Comput. Appl. Math., vol. 105, no. 1-2, pp. 285–297, 1999.
[43] P. Barone, “On the distribution of poles of padé approximants to the z-transform of complex gaussian white noise,” Journal of Approximation Theory, vol. 132, no. 2, pp. 224–240, 2005.
[44] L. Perotti, T. Regimbau, D. Vrinceanu, and D. Bessis, “Identification of gravitational-wave bursts in high noise using padé filtering,” Phys. Rev. D, vol. 90, p. 124047, Dec 2014. [Online]. Available: http://link.aps.org/doi/10.1103/ PhysRevD.90.124047
[45] P. Gonnet, S. Güttel, and L. N. Trefethen, “Robust Padé approximation via SVD,” SIAM Rev., vol. 55, pp. 101–117, 2013.
[46] O. Ibryaeva and V. Adukov, “An algorithm for computing a Padé approximant with minimal degree denominator,” J. Comput. Appl. Math., vol. 237, no. 1, pp. 529–541, 2013.
[47] M. Akar, “Detection of rotor bar faults in field oriented controlled induction motors,” JOURNAL OF POWER ELECTRONICS, vol. 12, no. 6, pp. 982–991, 2012.
[48] A. Bellini, A. Yazidi, F. Filippetti, C. Rossi, and G.-A. Capolino, “High frequency resolution techniques for rotor fault detection of induction machines,” Industrial Electronics, IEEE Transactions on, vol. 55, no. 12, pp. 4200–4209, 2008.
[49] S. H. Kia, H. Henao, and G.-A. Capolino, “A high-resolution frequency estimation method for three-phase induction machine fault detection,” Industrial Electronics, IEEE Transactions on, vol. 54, no. 4, pp. 2305–2314, 2007.
[50] M. Briani, “Development of a validated exponential analysis method,” Ph.D. thesis, University of Antwerp, 2017. Chapter 4 Article Reference
[1] S. P. Mohanty, A. Sengupta, P. Guturu, and E. Kougianos, “Everything you want to know about watermarking: From paper marks to hardware protection: From paper marks to hardware protection.” IEEE Consumer Electronics Magazine, vol. 6, no. 3, pp. 83–91, 2017.
[2] C.-Y. Lin, “Watermarking and digital signature techniques for multimedia authentication and copyright protection,” Ph.D. dissertation, Columbia University, 2001.
[3] I. Cox, M. Miller, J. Bloom, J. Fridrich, and T. Kalker, Digital watermarking and steganography. Morgan Kaufmann, 2007.
[4] C. Kumar, A. K. Singh, and P. Kumar, “A recent survey on image watermarking techniques and its application in egovernance,” Multimedia Tools and Applications, vol. 77, no. 3, pp. 3597–3622, 2018.
[5] X. Yu, C. Wang, and X. Zhou, “Review on semi-fragile watermarking algorithms for content authentication of digital images,” Future Internet, vol. 9, no. 4, p. 56, 2017.
[6] I. J. Cox, J. Kilian, T. Leighton, and T. Shamoon, “Secure spread spectrum watermarking for images, audio and video,” in Image Processing, 1996. Proceedings., International Conference on, vol. 3. IEEE, 1996, pp. 243–246.
[7] J. Wang and L. Ji, “A region and data hiding based error concealment scheme for images,” IEEE Transactions on Consumer Electronics, vol. 47, no. 2, pp. 257–262, 2001.
[8] R. E. Blahut, “Transform techniques for error control codes,” IBM Journal of Research and development, vol. 23, no. 3, pp. 299–315, 1979.
[9] M. Ben-Or and P. Tiwari, “A deterministic algorithm for sparse multivariate polynomial interpolation,” in Proceedings of the twentieth annual ACM symposium on Theory of computing. ACM, 1988, pp. 301–309.
[10] J. L. Massey, “Shift-register synthesis and BCH decoding,” IEEE Transactions on Information Theory, vol. 15, no. 1, pp. 122–127, Jan 1969.
[11] E. Kaltofen and W.-s. Lee, “Early termination in sparse interpolation algorithms,” Journal of Symbolic Computation, vol. 36, no. 3-4, pp. 365–400, 2003.
[12] M. T. Comer, E. L. Kaltofen, and C. Pernet, “Sparse polynomial interpolation and Berlekamp/Massey algorithms that correct outlier errors in input values,” in Proceedings of the 37th International Symposium on Symbolic and Algebraic Computation. ACM, 2012, pp. 138–145.
[13] E. T. Lin and E. J. Delp, “A review of fragile image watermarks,” in Proceedings of the Multimedia and Security Workshop (ACM Multimedia’99) Multimedia Contents, vol. 1. Citeseer, 1999, pp. 25–29.
[14] J. Fridrich, “Security of fragile authentication watermarks with localization,” in Security and Watermarking of Multimedia Contents IV, vol. 4675. International Society for Optics and Photonics, 2002, pp. 691–701.
[15] P. W. Wong, “A public key watermark for image verification and authentication,” in Image Processing, 1998. ICIP 98. Proceedings. 1998 International Conference on, vol. 1. IEEE, 1998, pp. 455–459.
[16] M. U. Celik, G. Sharma, E. Saber, and A. M. Tekalp, “Hierarchical watermarking for secure image authentication with localization,” IEEE Transactions on Image Processing, vol. 11, no. 6, pp. 585–595, 2002.
[17] F. H. Yeh and G. C. Lee, “Content-based watermarking in image authentication allowing remedying of tampered images,” Optical Engineering, vol. 45, no. 7, p. 077004, 2006.
[18] D. S. Chandra, “Digital image watermarking using singular value decomposition,” in Circuits and Systems, 2002. MWSCAS- 2002. The 2002 45th Midwest Symposium on, vol. 3. IEEE, 2002, pp. III–III.
[19] E. Ganic and A. M. Eskicioglu, “Robust DWT-SVD domain image watermarking: embedding data in all frequencies,” in Proceedings of the 2004 Workshop on Multimedia and Security. ACM, 2004, pp. 166–174.
[20] X.-P. Zhang and K. Li, “Comments on” an SVD-based watermarking scheme for protecting rightful ownership”,” IEEE Transactions on Multimedia, vol. 7, no. 3, pp. 593–594, 2005.
[21] R.-S. Run, S.-J. Horng, J.-L. Lai, T.-W. Kao, and R.-J. Chen, “An improved SVD-based watermarking technique for copyright protection,” Expert Systems with applications, vol. 39, no. 1, pp. 673–689, 2012.
[22] C.-C. Lai, “A digital watermarking scheme based on singular value decomposition and tiny genetic algorithm,” Digital Signal Processing, vol. 21, no. 4, pp. 522–527, 2011.
[23] R. Sun, H. Sun, and T. Yao, “A SVD-and quantization based semi-fragile watermarking technique for image authentication, volume = 2, year = 2002,” in Signal Processing, 2002 6th International Conference on. IEEE, pp. 1592–1595.
[24] Q. Kang, K. Li, and H. Chen, “An SVD-based fragile watermarking scheme with grouped blocks,” in Information Technology and Electronic Commerce (ICITEC), 2014 2nd International Conference on. IEEE, 2014, pp. 172–179.
[25] A. Mooney, J. G. Keating, and D. M. Heffernan, “Performance analysis of chaotic and white watermarks in the presence of common watermark attacks,” Chaos, Solitons & Fractals, vol. 42, no. 1, pp. 560–570, 2009.
[26] F. Y. Shih, Digital watermarking and steganography: fundamentals and techniques. CRC press, 2017.
[27] M.-A. Kim and W.-H. Lee, “A content-based fragile watermarking scheme for image authentication,” in Content Computing. Springer, 2004, pp. 258–265.
[28] P. W. Wong and N. D. Memon, “Secret and public key authentication watermarking schemes that resist vector quantization attack,” in Security and watermarking of multimedia contents II, vol. 3971. International Society for Optics and Photonics, 2000, pp. 417–428.
[29] R. Zippel, “Interpolating polynomials from their values,” Journal of Symbolic Computation, vol. 9, no. 3, pp. 375–403, 1990.
[30] E. Kaltofen and B. M. Trager, “Computing with polynomials given byblack boxes for their evaluations: Greatest common divisors, factorization, separation of numerators and denominators,” Journal of Symbolic Computation, vol. 9, no. 3, pp. 301–320, 1990.
[31] J. Hu and M. Monagan, “A fast parallel sparse polynomial GCD algorithm,” in Proceedings of the ACM on International Symposium on Symbolic and Algebraic Computation, ser. ISSAC ’16. New York, NY, USA: ACM, 2016, pp. 271–278. [Online]. Available: http://doi.acm.org/10.1145/2930889.2930903
[32] M. Giesbrecht, G. Labahn, and W.-s. Lee, “Symbolic–numeric sparse interpolation of multivariate polynomials,” Journal of Symbolic Computation, vol. 44, no. 8, pp. 943–959, 2009.
[33] A. Cuyt, M.-n. Tsai, M. Verhoye, and W.-s. Lee, “Faint and clustered components in exponential analysis,” Applied Mathematics and Computation, vol. 327, pp. 93–103, 2018. Chapter 4 Background Information Reference
[1] T. Matsuo and K. Kurosawa, “On parallel hash functions based on block-ciphers,” IEICE TRANSACTIONS on Fundamentals of Electronics, Communications and Computer Sciences, vol. 87, no. 1, pp. 67–74, 2004.
[2] N. Li, W. Du, and D. Boneh, “Oblivious signature-based envelope,” Distributed Computing, vol. 17, no. 4, pp. 293–302, 2005.
[3] I. Cox, M. Miller, J. Bloom, J. Fridrich, and T. Kalker, Digital watermarking and steganography. Morgan kaufmann, 2007.
[4] C.-S. Woo, “Digital image watermarking methods for copyright protection and authentication,” Ph.D. dissertation, Queensland University of Technology, 2007.
[5] G. Hua, J. Huang, Y. Q. Shi, J. Goh, and V. L. Thing, “Twenty years of digital audio watermarking—a comprehensive review,” Signal Processing, vol. 128, pp. 222–242, 2016.
[6] E. T. Lin and E. J. Delp, “A review of fragile image watermarks,” in Proceedings of the Multimedia and Security Workshop (ACM Multimedia’99) Multimedia Contents, vol. 1. Citeseer, 1999, pp. 25–29.
[7] M. U. Celik, G. Sharma, E. Saber, and A. M. Tekalp, “Hierarchical watermarking for secure image authentication with localization,” IEEE Transactions on Image Processing, vol. 11, no. 6, pp. 585–595, 2002.
[8] M.-A. Kim and W.-H. Lee, “A content-based fragile watermarking scheme for image authentication,” in Content Computing. Springer, 2004, pp. 258–265.
[9] S. Ali, “Steganography and digital watermarking as promising approaches to information hiding: A state-of-the-art review,” International Journal for Research in Applied Science & Engineering Technology, vol. 5, no. 7, pp. 313–318, 2017.
[10] E. T. Lin, C. I. Podilchuk, and E. J. Delp, “Detection of image alterations using semifragile watermarks,” in Security and Wa- termarking of Multimedia Contents II, vol. 3971. International Society for Optics and Photonics, 2000, pp. 152–164.
[11] X. Yu, C. Wang, and X. Zhou, “Review on semi-fragile watermarking algorithms for content authentication of digital images,” Future Internet, vol. 9, no. 4, p. 56, 2017.
[12] X. Zhou, X. Duan, and D. Wang, “A semifragile watermark scheme for image authentication,” in Multimedia Modelling Conference, 2004. Proceedings. 10th International. IEEE, 2004, pp. 374–377.
[13] C. Kumar, A. K. Singh, and P. Kumar, “A recent survey on image watermarking techniques and its application in egovernance,” Multimedia Tools and Applications, vol. 77, no. 3, pp. 3597–3622, 2018.
[14] R. E. Blahut, “Transform techniques for error control codes,” IBM Journal of Research and development, vol. 23, no. 3, pp. 299–315, 1979.
[15] M. Ben-Or and P. Tiwari, “A deterministic algorithm for sparse multivariate polynomial interpolation,” in Proceedings of the twentieth annual ACM symposium on Theory of computing. ACM, 1988, pp. 301–309.
[16] I. J. Cox, J. Kilian, T. Leighton, and T. Shamoon, “Secure spread spectrum watermarking for images, audio and video,” in Image Processing, 1996. Proceedings., International Conference on, vol. 3. IEEE, 1996, pp. 243–246.