研究生: |
曾淵泰 Yuan-Tai Tzeng |
---|---|
論文名稱: |
微波介電材料Ba2Ti9O20和Ba(Mg1/3Ta2/3)O3之紅外光譜研究 Infrared study of microwave dielectric materials Ba2Ti9O20 and Ba(Mg1/3Ta2/3)O3 |
指導教授: |
劉祥麟
Liu, Hsiang-Lin |
學位類別: |
碩士 Master |
系所名稱: |
物理學系 Department of Physics |
論文出版年: | 2007 |
畢業學年度: | 95 |
語文別: | 中文 |
論文頁數: | 165 |
中文關鍵詞: | 微波介電 、介電材料 、Ba2Ti9O20 、Ba(Mg1/3Ta2/3)O3 、紅外光 |
英文關鍵詞: | Ba2Ti9O20, Ba(Mg1/3Ta2/3)O3, Infrared, microwave dielectric, dielectric materials |
論文種類: | 學術論文 |
相關次數: | 點閱:256 下載:2 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
我們研究不同氣體熱退火處理、摻雜不同SnO2濃度之Ba2Ti9O20,及摻雜不同Ni濃度、不同製備過程之Ba(Mg1/3Ta2/3)O3的紅外光譜響應,並探討紅外光譜特徵與其微波特性的關連。
首先,我們觀察到(i)氧氣熱退火處理的Ba2Ti9O20樣品結構具有最大的兆赫波段Q×f值、及最小的介電係數,顯示其結構最完整,空缺較少;(ii)摻雜SnO2濃度0.055 mol的Ba2Ti9O20 樣品,其Q×f值最大。但當摻雜SnO2濃度超過0.055 mol時,部分紅外光吸收峰的半高寬變大。Ba2Ti9O20樣品的晶格同調性降低,導致其品質因子也隨之下降。
再者,我們發現Ba(Mg1/3Ta2/3)O3 的Eu(OII)對稱性241 cm-1振動模,貢獻絕大部分的介電係數,此振動模的半高寬與Ba(Mg1/3Ta2/3)O3的品質因子有緊密的關連性。當摻雜不同Ni濃度或不同製備過程之Ba(Mg1/3Ta2/3)O3的品質因子數值降低時,此振動模的半高寬愈大,表示晶格同調性下降(即1:2有序結構逐漸被破壞)。
We study the infrared properties of Ba2Ti9O20 dealt with different annealing gas and doped with different content of SnO2 as well as Ba(Mg1/3Ta2/3)O3 with different Ni doping and with different preparation processes. And we discuss the correlation between their infrared characteristics and microwave properties.
First, we obtain the following results. (i) The Ba2Ti9O20 annealed with O2 gas has maximum Q×f value and minimum dielectric constant, which represents the sample has more ordered structure and less defect. (ii)The Ba2Ti9O20 doped with 0.055 mol SnO2 has the maximum Q×f factor value. While the content of SnO2 doped with Ba2Ti9O20 exceeds 0.055 mol, the linewidths of several infrared vibration mode of the Ba2Ti9O20 become larger. Due to the descent of the coherency in lattice vibration modes for Ba2Ti9O20 sample, the Q×f value degrades.
Moreover, we find that the vibration mode Eu(II) at about 241 cm-1 of the Ba(Mg1/3Ta2/3)O3 has maximum spectral weight of the optical conductivity. And the linewidth of this vibration mode sensitively gauges the Q×f value. When the Q×f value of the Ba(Mg1/3Ta2/3)O3 which is doped with different Ni content or which is dealt with different preparation processes degrades, then the linewidth of this vibration mode increases, which means the coherency of lattice vibration modes degrades (the 1:2 ordering degree degrades).
[1] 吳朗著,電子陶瓷-介電,全欣資訊圖書股份有限公司,中華民國八十三年十月初版。
[2] 王惠傑、張鳴助,材料與社會第65期,p.53-61 (1992)。
[3] 電子材料專輯,電子月刊第十一卷第四期四月刊 (2005)。
[4] M. Furuya and A. Ochi “Microwave Dielectric Properties for Ba(Mg1/3Ta2/3)O3-A(Mg1/2W1/2)O3(A=Ba, Sr, and Ca) Ceramics,” Jpn. J. Appl. Phys. 33, 5482 (1994).
[5] Y. Fang, A. Hu, S. Ouyang, and J. Joung “The effect of calcination on the microwave dielectric properties of Ba(Mg1/3Ta2/3)O3,” J. Eur. Ceram. Soc. 21, 2745 (2001).
[6] D. Sgala and S. Koyasu “Infrared Reflection of Ba(Mg1/3Ta2/3)O3 Ceramics,” J. Am. Ceram. Soc. 76, 2433 (1993).
[7] I. N. Lin, C. T. Chia, H. L. Liu, Y. C. Chen, H. F. Cheng, and C. C. Chi “High frequency dielectric properties of Ba(Mg1/3Ta2/3)O3 complex perovskite ceramics,” J. Eur. Ceram. Soc. 23, 2633 (2003).
[8] G. Burns, Solid State Physics, Academic Press. (1985).
[9] Douglas A. Skoog and James J. Leary著,林敬二、林宗義審譯,儀器分析,美亞書版股份有限公司,1971第四版上冊。
[10] 毛光興著,儀器分析,幼獅文化事業公司,中華民國六十九年七月第二版。
[11] 李冠卿著,近代光學,聯經出版社,中華民國七十七年九月初版。
[12] Eugene Hecht, Optics, Addison Wesley, 3rd ed., New York, 1998.
[13] 何金龍,國立臺灣師範大學物理研究所博士論文,94年10月。
[14] 翁士民,國立臺灣師範大學物理研究所碩士論文,93年6月。
[15] T. Shimada “Far-infrared reflection and microwave properties of Ba([Mg1-xZnx]1/3,Ta2/3)O3 ceramics,” J. Eur. Ceram. Soc. 24, 1799 (2004).
[16] E. Tillmanns, W. Hofmeister, and W. H. Baur “ Crystal Structure of the Microwave Dielectric Resonator Ba2Ti9020,” J. Am. Ceram. Soc. 66, 268 (1983).
[17] G. D. Fallon and B. M. Gatehouse “The Crystal Structure of Ba2Ti9O20: A Hollandite Related Compound,” J. Solid State Chem. 49, 56 (1983).
[18] S. Janaswamy, G. S. Murthy, E. D. Dias, and V. R. K. Murthy “Structural analysis of BaMg1/3(Ta,Nb)2/3O3 ceramics ceramics,” Materials Letters 55, 414 (2002).
[19] T. Takahashi, E. J. Wu, A. V. D. Ven, and G. Ceder “First-principles Investigation of B-site Ordering in Ba(MgxTa1-x)O3 Microwave Dielectrics with the Complex Perovskite Structure,” Jpn. J. Appl. Phy. 39, 1241 (2000).
[20] R. J. Cava “Dielectric materials for applications in microwave communications,” J. Mater. Chem. 11, 54 (2001).
[21] H. Tamura, D. A. Sagala, and K. Wakino “Lattice Vibrations of Ba(Zn1/3Ta2/3)O3 Crystal with Ordered Perovskite Structure,” Jpn. J. Appl. Phy. 25, 787 (1986).
[22] F. S. Galasso, Structure, Properties and Preparation of Perovskite- Type Compounds, 1st ed., pp. 13-15 (1969).
[23] C. T. Chia, Y. C. Chen, H. F. Cheng, and I. N. Lin “Correlation of microwave dielectric properties and normal vibration modes of xBa(Mg1/3Ta2/3)O3-(1-x)Ba(Mg1/3Nb2/3)O3 ceramics: I . Raman spec-
troscopy,” J. Appl. Phy. 94, 3360 (2003).
[24] Y. C. Chen, H. F. Cheng, H. L. Liu, and C. T. Chia, and I. N. Lin “Correlation of microwave dielectric properties and normal vibration modes of xBa(Mg1/3Ta2/3)O3–(1-x)Ba(Mg1/3Nb2/3)O3 ceramics: II. Infrared spectroscopy,” J. Appl. Phy. 94, 3365 (2003).
[25] J. D. Freire and R. S. Katiyar “Lattice dynamics of crystals with tetragonal BaTiO3 structure,” Phys. Rev. B 37, 2074 (1988).
[26] B. W. Hakki and P. D. Coleman “A Dielectric Resonator Method of Measuring Inductive Capacities in the Millimeter Range,” IEEE Tran. M. T. T. 8, 402 (1960).
[27] Y. Kobayashi and M. Katoh “Microwave Measurement of Dielectric
Properties of Low-Loss Materials by the Dielectric Rod Resonator Method,” IEEE Tans, M. T. T. 33, 586 (1985).
[28] M. Chen, D. B. Tanner, and J. C. Nino “ Infrared study of the phonon modes in bismuth pyrochlores,” Phys. Rev. B 72, 054303 (2005).
[29] B. D. Silvermann “Microwave Absorption in Cubic Strontium Titanate,” Physics review 125, 1921 (1962).
[30]W. G. Spitzer, R. C. Miller, D. A. Kleinman, and L. E. Howarth “ Far Infrared Dielectric Dispersion in BaTiO3, SrTiO3, and TiO2,” Phys. Rev. 126, 1710 (1962).
[31] L. W. Chu, G. H. Hsiue, and I. N. Lin “Improvement on the chara- cteristic of Ba2Ti9O20 microwave dielectric materials prepared by modified co-precipitation method,” J. Eur. Ceram. Soc. 26, 2081 (2006).
[32] C. F. Yang “The Microwave Characteristics of Glass-BaTi4O9 Ceramics,” Jpn. J. Appl. Phys. 38, 3576 (1999).
[33] H. C. Ling, M. F. Yan, and W. W. Rhodes “High dielectric constant and small temperature coefficient bismuth-based dielectric com- positions,” J. Mater. Res. 5, 1752 (1990).
[34] S. F. Wang, T. C. K. Yang, C. C. Chiang, and S. H. Y. Tsai “Effects of additives on the phase formation and microstructural evolution of Ba2Ti9O20 microwave ceramic,” Ceram. Int. 29, 77 (2003).
[35] W. Guoqing, W. Shunhua, and S. Hao “Microwave dielectric ceramics in the BaO–TiO2–ZnO system doped with MnCO3 and SnO2,” Materials Letters, 59, 2229 (2005).
[36] T. Negas, G. Yeager, S. Bell, N Coats, and I. Minis “BaTi4O9/Ba2Ti9O20-Based Ceramics Resurrected for Modern Microwave Applications,” Am. Ceram. Soc. Bull. 72, 80 (1993).
[37] A. S. Barker, Jr. and M. Tinham “Far-Infrared Ferroelectric Vibration Mode in SrTiO3,” Phys. Rev. 125, 1527 (1962).
[38] M. L. Hu, C. T. Chia, J. Y. Chang. W. S. Tse, and J. T, Yu “Low-temperature Raman study of zinc-doped lithium niobate crystal powders,” Mater. Chem. Phys. 78, 358 (2003).
[39] H. Salehi, S. M. Hosseini, and N. Shahtahmasebi “The effects of Ni on structural and electronic properties of BaTiO3 ceramic,” Ceramics International 30, 81 (2004).
[40] N. Ichinose and T. Shimada “Effect of grain size and secondary phase on microwave dielectric properties of Ba(Mg1/3Ta2/3)O3 and Ba([Mg,Zn]1/3Ta2/3)O3 systems,” J. Eur. Ceram. Soc. 26, 1755 (2006).
[41] F. D. Bloss, Crystallography and Crystal Chemistry, pp. 212-213 (1971).
[42] M. W. Lufaso “Crystal Structures, Modeling, and Dielectric Property
Relationships of 2:1 Ordered Ba3MM'O9 (M=Mg, Ni, Zn; M'=Nb, Ta) Perovskites,” Chem. Mater. 16, 2148 (2004).
[43] Y. K. Kim, K. M. Lee, and H. M. Jang “1:2 Long-range ordering and defect mechanism of WO3-doped perovskite Ba(Mg1/3Ta2/3)O3,” J. Mater. Scien. 35, 4885 (2000).
[44] T. Shimada “Effect of Ni substitution on the dielectric properties and
lattice vibration of Ba(Mg1/3Ta2/3)O3,” J. Eur. Ceram. Soc. 26, 1781 (2006).
[45]M. Barwick, F. Azough, and R. Freer “Structure and dielectric properties of perovskite ceramics in the system Ba(Ni1/3Nb2/3)O3 – Ba(Zn1/3Nb2/3)O3,” J. Eur. Ceram. Soc. 26, 1767 (2005).
[46] A. Dias, V. S. T. Ciminelli, F. M. Matinaga, and R. L. Moreira “Raman scattering and X-ray diffraction investigations on hydrothermal barium magnesium niobate ceramics,” J. Eur. Ceram. Soc. 21, 2739 (2001).
[47] T. Kolodiazhnyi, A. Petric, A. Belous, O. V’yunov, and O. Yanchevskij “Synthesis and dielectric properties of barium tantalates and niobates with complex perovskite structure,” J. Mater. Res. 17, 3182 (2002).
[48] H. J. Youn, K. Y. Kim, and H. Kim “Microstructural Characteristics of Ba(Mg1/3Ta2/3)O3 Ceramics and Its Related Microwave Dielectric Properties,” Jpn. J. Appl. Phys. 35, 3947 (1996).
[49] 陳美瑜,國立臺灣師範大學物理研究所碩士論文,95年6月。
[50] M. H. Liang, C. T. Hu, H. F. Cheng, I. N. Lin, and J. Steeds “Effect of sintering process on microstructure characteristics of Ba(Mg1/3Ta2/3)O3 ceramics and their microwave dielectric properties,” J. Eur. Ceram. Soc. 21, 2759 (2001).
[51] T. Shimada “Dielectric loss and damping constants of lattice vibrations in Ba(Mg1/3,Ta2/3)O3 ceramics,” J. Eur. Ceram. Soc. 23, 2647 (2003).