簡易檢索 / 詳目顯示

研究生: 符正炘
Fu, Cheng-Hsin
論文名稱: 以衰減全反射-傅立葉轉換紅外光譜法結合化學動力學對過氧乙酸進行定量
Quantitation of Peracetic Acid by Attenuated Total Reflectance-Infrared Fourier Transform Spectroscopy Coupled with Chemical Kinetic
指導教授: 林震煌
Lin, Cheng-Huang
口試委員: 李君婷
Li, Chun-Ting
何佳安
Ho, Ja-An
林震煌
Lin, Cheng-Huang
口試日期: 2022/06/15
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 83
中文關鍵詞: 過氧乙酸動力學定量FTIRATR-FTIR
英文關鍵詞: peracetic acid, quantitation, kinetic, FTIR, ATR-FTIR
研究方法: 實驗設計法
DOI URL: http://doi.org/10.6345/NTNU202200934
論文種類: 學術論文
相關次數: 點閱:141下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究提出一種通過衰減全反射傅立葉轉換紅外光譜法(Attenuated Total Reflectance-Infrared Fourier Transform Spectroscopy , ATR-FTIR) 定量過氧乙酸 (Peracetic Acid,PAA) 的方法。此方法的開發突破了以往使用滴定法所需時間受待測樣品濃度影響的限制,從檢測到套用關係式換算僅需不到兩分鐘。本方法除了測量時間快速且操作簡單之外,同時具備測量精準以及所需樣品量少的優點。
    本研究發現過氧乙酸在 1753 波數 處有一明顯特徵峰,該特徵峰比起以往研究的特徵峰在與其他成分圖譜比較的呈現上更為明顯,且從未被用於檢測濃度。用標準過氧乙酸以1753 波數 峰為基礎建立吸光度與濃度的檢量線,並以檢量線透過計算建立定量方程式,從而確認過氧乙酸濃度。透過在攝氏25度下,進行6種不同實驗條件合成的樣品之動力學計算確定了過氧乙酸的反應動力學方程式,即使反應尚未平衡,也可以透過方程式測量瞬時濃度,同時提供了準確動態即時監測的可行性。將本研究提出之動力學方程式所得到的平衡常數與速率常數,與利用傳統滴定法定量之平衡常數與速率常數作對比,通過對反應動力學計算的驗證,ATR-FTIR對過氧乙酸的定量分析方法是方便使用且可靠,甚至於動力學應用上準確性更勝於滴定法。

    Propose a method of quantitation of peracetic acid (PAA) by Attenuated Total Reflection Fourier Transform Infrared (ATR-FTIR). This method is convenient than traditional titration method. Because the detection time of traditional titration method is depending on the sample’s concentration. But FTIR method only spend 2 minutes from detection to result. Besides short measure time and simply operate, this method has the advantage of less sample required and high accuracy.
    It was found that a characteristic peak of peracetic acid at 1753 wavenumber, is the clearest characteristic peak, and it never be used to detect the concentration. Using standard peracetic acid to build a calibration curve of absorbance versus concentration to gain the accurate concentration of peracetic acid. Propose the peracetic acid reaction kinetic equation by 6 different experiment synthesis in 25°C. No matter equilibrium or not, it is possible to gain the instantaneous concentration by the equation. It also represents the feasibility of accurate on-line monitoring. Compared the equilibrium constant and rate constant of equation with the titration’s one that proves the quantitation of peracetic acid by ATR-FTIR is credible.

    摘要 i Abstract ii 目次 iii 表次 vi 圖次 vii 第一章 緒論 1 1-1研究目的 1 1-2過氧乙酸介紹 3 第二章 分析原理及方法 6 2-1 滴定法 6 2-2 層析法 7 2-3 比色法 8 2-4 傅立葉變換紅外光譜法 9 2-4-1衰減全反射傅立葉變換紅外光譜法 10 2-5 Gaussian 11 第三章 藥品、儀器與實驗方法 12 3-1 藥品介紹 12 3-2 儀器介紹 15 3-3 實驗方法 17 3-3-1 確定樣品體積 17 3-3-2 特徵峰觀察 17 3-3-3 理論計算驗證特徵峰 17 3-3-4 自製過氧乙酸驗證特徵峰 18 3-4 標準品檢量線製作 18 3-5定量方程式的建立 18 3-6 過氧乙酸與溫度關係 19 3-7 自製過氧乙酸比較 20 3-7-1 無添加的自製過氧乙酸 20 3-7-2 添加磷酸的自製過氧乙酸 21 3-7-3 添加硫酸的自製過氧乙酸 21 3-7-4 添加磷酸與硫酸的自製過氧乙酸 23 3-8 資料處理 23 3-8-1 圖譜平滑化 23 3-8-2 製作擬合曲線 24 3-8-3 化學動力學計算 24 第四章 結果與討論 25 4-1 確定樣品體積 25 4-2 過氧乙酸特徵峰 26 4-2-1 特徵峰圖譜觀察 26 4-2-2 理論計算驗證 28 4-2-3自製過氧乙酸驗證 28 4-3 過氧乙酸檢量線 32 4-4 定量方程式 33 4-5 過氧乙酸與溫度關係 35 4-6 自製過氧乙酸結果 37 4-6-1 無添加的自製過氧乙酸 37 4-6-2磷酸作為穩定劑之效果 39 4-6-3 添加硫酸的自製過氧乙酸 41 4-6-4 添加磷酸與硫酸的自製過氧乙酸 44 第五章 結論 46 參考文獻 47 附錄 59

    1. Baldry, M. G. C. The Bactericidal, Fungicidal and Sporicidal Properties of Hydrogen Peroxide and Peracetic Acid. J. Appl. Bacteriol. 1983, 54 (3), 417–423.
    2. Cavallini, G. S.; Campos, S. X. de; Souza, J. B. de; Vidal, C. M. de S. Comparison of Methodologies for Determination of Residual Peracetic Acid in Wastewater Disinfection. Int. J. Environ. Anal. Chem. 2013, 93 (8), 906–918.
    3. Greenspan, F. P.; MacKellar, D. G. Analysis of Aliphatic Per Acids. Anal. Chem. 1948, 20 (11), 1061–1063.
    4. Higashi, N.; Yokota, H.; Hiraki, S.; Ozaki, Y. Direct Determination of Peracetic Acid, Hydrogen Peroxide, and Acetic Acid in Disinfectant Solutions by Far-Ultraviolet Absorption Spectroscopy. Anal. Chem. 2005, 77 (7), 2272–2277.
    5. Chhetri, R. K.; Kaarsholm, K. M. S.; Andersen, H. R. Colorimetric Quantification Methods for Peracetic Acid Together with Hydrogen Peroxide for Water Disinfection Process Control. Int. J. Environ. Res. Public. Health 2020, 17 (13), 4656.
    6. Awad, M. I.; Harnoode, C.; Tokuda, K.; Ohsaka, T. Simultaneous Electroanalysis of Peroxyacetic Acid and Hydrogen Peroxide. Anal. Chem. 2001, 73 (8), 1839–1843.
    7. Di Furia, F.; Prato, M.; Quintily, U.; Salvagno, S.; Scorrano, G. Gas-Liquid Chromatographic Method for the Determination of Peracids in the Presence of a Large Excess of Hydrogen Peroxide. Analyst 1984, 109 (8), 985.
    8. Albolafio, S.; Tudela, J. A.; Hernández, N.; Ortuño, J. A.; Allende, A.; Gil, M. I. Practical Applications of Sensor-Based Methodologies for Monitoring Peracetic Acid (PAA) as a Disinfectant of Fresh Produce Wash Water. Food Control 2021, 121, 107632. 
    9. Monarca, S.; Richardso, S. D.; Feretti, D.; Grottolo, M.; Thruston, A. D.; Zani, C.; Navazio, G.; Ragazzo, P.; Zerbini, I.; Alberti, A. Mutagenicity and Disinfection By-Products in Surface Drinking Water Disinfected with Peracetic Acid. Environ. Toxicol. Chem. 2002, 21 (2), 309–318.
    10. Giguère, P. A.; Olmos, A. W. A Spectroscopic Study of Hydrogen Bonding in Performic And Peracetic Acids. Can. J. Chem. 1952, 30 (11), 821–830.
    11. Koubek, E.; Haggett, M. L.; Battaglia, C. J.; Ibne-Rasa, K. M.; Pyun, H. Y.; Edwards, J. O. Kinetics and Mechanism of the Spontaneous Decompositions of Some Peroxoacids, Hydrogen Peroxide and t-Butyl Hydroperoxide. J. Am. Chem. Soc. 1963, 85 (15), 2263–2268.
    12. Klenk, H.; Götz, P. H.; Siegmeier, R.; Mayr, W. Peroxy Compounds, Organic. In Ullmann’s Encyclopedia of Industrial Chemistry; Wiley-VCH Verlag GmbH & Co. KGaA, Ed.; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2000; p a19_199.
    13. Kitis, M. Disinfection of Wastewater with Peracetic Acid: A Review. Environ. Int. 2004, 30 (1), 47–55.
    14. Leveneur, S.; Thönes, M.; Hébert, J.-P.; Taouk, B.; Salmi, T. From Kinetic Study to Thermal Safety Assessment: Application to Peroxyformic Acid Synthesis. Ind. Eng. Chem. Res. 2012, 51 (43), 13999–14007.
    15. Park, S.-Y.; Choi, J.-H.; Kim, J.-H.; Cho, S.-M.; Yeon, S.; Jeong, H.; Lee, S. M.; Choi, I.-G. Peracetic Acid-Induced Kraft Lignin Solubilization and Its Characterization for Selective Production of Macromolecular Biopolymers. Int. J. Biol. Macromol. 2020, 161, 1240–1246.
    16. Yuan, Z.; Ni, Y.; Van Heiningen, A. R. P. Kinetics of Peracetic Acid Decomposition: Part I: Spontaneous Decomposition at Typical Pulp Bleaching Conditions. Can. J. Chem. Eng. 1997, 75 (1), 37–41.
    17. Cleaning and Disinfection of Equipment for Gastrointestinal Endoscopy. Report of a Working Party of the British Society of Gastroenterology Endoscopy Committee. Gut 1998, 42 (4), 585–593.
    18. Ossia-Ongagna, Y.; Sabatier, R. Comparison of in vitro activity of six disinfectants on bacteria from contamination in hemodialysis water. J. Pharm. Belg. 1993, 48 (5), 341–351.
    19. Kim, J.; Zhang, T.; Liu, W.; Du, P.; Dobson, J. T.; Huang, C.-H. Advanced Oxidation Process with Peracetic Acid and Fe(II) for Contaminant Degradation. Environ. Sci. Technol. 2019, 53 (22), 13312–13322.
    20. Zhang, C.; Brown, P. J. B.; Hu, Z. Thermodynamic Properties of an Emerging Chemical Disinfectant, Peracetic Acid. Sci. Total Environ. 2018, 621, 948–959.
    21. Cai, M.; Sun, P.; Zhang, L.; Huang, C.-H. UV/Peracetic Acid for Degradation of Pharmaceuticals and Reactive Species Evaluation. Environ. Sci. Technol. 2017, 51 (24), 14217–14224.
    22. Luukkonen, T.; Pehkonen, S. O. Peracids in Water Treatment: A Critical Review. Crit. Rev. Environ. Sci. Technol. 2017, 47 (1), 1–39.
    23. Moor, K.; Wotzka, S. Y.; Toska, A.; Diard, M.; Hapfelmeier, S.; Slack, E. Peracetic Acid Treatment Generates Potent Inactivated Oral Vaccines from a Broad Range of Culturable Bacterial Species. Front. Immunol. 2016, 7.
    24. Pechacek, N.; Osorio, M.; Caudill, J.; Peterson, B. Evaluation of the Toxicity Data for Peracetic Acid in Deriving Occupational Exposure Limits: A Minireview. Toxicol. Lett. 2015, 233 (1), 45–57.
    25. Du, P.; Liu, W.; Cao, H.; Zhao, H.; Huang, C.-H. Oxidation of Amino Acids by Peracetic Acid: Reaction Kinetics, Pathways and Theoretical Calculations. Water Res. X 2018, 1, 100002.
    26. Zhang, K.; Zhou, X.; Du, P.; Zhang, T.; Cai, M.; Sun, P.; Huang, C.-H. Oxidation of β-Lactam Antibiotics by Peracetic Acid: Reaction Kinetics, Product and Pathway Evaluation. Water Res. 2017, 123, 153–161.
    27. Kim, J.; Du, P.; Liu, W.; Luo, C.; Zhao, H.; Huang, C.-H. Cobalt/Peracetic Acid: Advanced Oxidation of Aromatic Organic Compounds by Acetylperoxyl Radicals. Environ. Sci. Technol. 2020, 54 (8), 5268–5278.
    28. Luukkonen, T.; Heyninck, T.; Rämö, J.; Lassi, U. Comparison of Organic Peracids in Wastewater Treatment: Disinfection, Oxidation and Corrosion. Water Res. 2015, 85, 275–285.
    29. Kim, J.; Huang, C.-H. Reactivity of Peracetic Acid with Organic Compounds: A Critical Review. ACS EST Water 2021, 1 (1), 15–33.
    30. Lynam, P. Comparison of the Mycobactericidal Activity of 2% Alkaline Glutaraldehyde and “Nu-Cidex” (0·35% Peracetic Acid). J. Hosp. Infect. 1995, 30 (3), 237–240.
    31. Binder, W. H.; Menger, F. M. Assay of Peracid in the Presence of Excess Hydrogen Peroxide. Anal. Lett. 2000, 33 (3), 479–488.
    32. Xue, R.; Shi, H.; Ma, Y.; Yang, J.; Hua, B.; Inniss, E. C.; Adams, C. D.; Eichholz, T. Evaluation of Thirteen Haloacetic Acids and Ten Trihalomethanes Formation by Peracetic Acid and Chlorine Drinking Water Disinfection. Chemosphere 2017, 189, 349–356.
    33. Ting, D. S. W.; Carin, L.; Dzau, V.; Wong, T. Y. Digital Technology and COVID-19. Nat. Med. 2020, 26 (4), 459–461.
    34. Cutts, T.; Kasloff, S.; Safronetz, D.; Krishnan, J. Decontamination of Common Healthcare Facility Surfaces Contaminated with SARS-CoV-2 Using Peracetic Acid Dry Fogging. J. Hosp. Infect. 2021, 109, 82–87.
    35. Falsanisi, D.; Gehr, R.; Santoro, D.; Dell’Erba, A.; Notarnicola, M.; Liberti, L. Kinetics of PAA Demand and Its Implications on Disinfection of Wastewaters. Water Qual. Res. J. 2006, 41 (4), 398–409.
    36. Sode, F. Simultaneous Determination of Peracetic Acid and Acetic Acid by Titration with NaOH. Anal Methods 2014, 6 (7), 2406–2409.
    37. Bodiroga, M.; Ognjanović, J. Determination of peracetic acid and hydrogen peroxide in a preparation. Vojnosanit. Pregl. 2002, 59 (3), 277–279.
    38. Cheng, C.; Li, H.; Wang, J.; Wang, H.; Yang, X. A Review of Measurement Methods for Peracetic Acid (PAA). Front. Environ. Sci. Eng. 2020, 14 (5), 87.
    39. Pinkernell, U.; Effkemann, S.; Karst, U. Simultaneous HPLC Determination of Peroxyacetic Acid and Hydrogen Peroxide. Anal. Chem. 1997, 69 (17), 3623–3627.
    40. Cairns, G. T.; Ruiz Diaz, R.; Selby, K.; Waddington, D. J. Determination of Organic Peroxyacids and Hydroperoxides by Gas Chromatography. J. Chromatogr. A 1975, 103 (2), 381–384.
    41. Effkemann, S. Reagent for the High-Performance Liquid Chromatography Determination of Peroxycarboxylic Acids. The Analyst 1998, 123 (8), 1761–1765.
    42. Pinkernell, U.; Karst, U.; Cammann, K. Determination of Peroxyacetic Acid Using High-Performance Liquid Chromatography with External Calibration. Anal. Chem. 1994, 66 (15), 2599–2602.
    43. Zhang, K. Stopped-Flow Spectrophotometric Determination of Hydrogen Peroxide with Hemoglobin as Catalyst. Talanta 2000, 51 (1), 179–186.
    44. Palin, A. T. The Determination of Free and Combined Chlorine in Water by the Use of Diethyl- p -Phenylene Diamine. J. - Am. Water Works Assoc. 1957, 49 (7), 873–880.
    45. Cugley, J.; Meyer, R.; Günthard, Hs. H. Infrared Spectra, Force Constants and Thermodynamic Functions of Matrix Isolated Peroxyacetic Acid. Chem. Phys. 1976, 18 (3–4), 281–292.
    46. Heise, H. M.; Küpper, L.; Butvina, L. N. Novel Infrared Optical Probes for Process Monitoring and Analysis Based on Next-Generation Silver Halide Fibers. Anal. Bioanal. Chem. 2003, 375 (8), 1116–1123.
    47. Jakusch, M.; Janotta, M.; Mizaikoff, B.; Mosbach, K.; Haupt, K. Molecularly Imprinted Polymers and Infrared Evanescent Wave Spectroscopy. A Chemical Sensors Approach. Anal. Chem. 1999, 71 (20), 4786–4791.
    48. Mizaikoff, B. Infrared Optical Sensors for Water Quality Monitoring. Water Sci. Technol. 2003, 47 (2), 35–42.
    49. Janotta, M.; Vogt, F.; Voraberger, H.-S.; Waldhauser, W.; Lackner, J. M.; Stotter, C.; Beutl, M.; Mizaikoff, B. Direct Analysis of Oxidizing Agents in Aqueous Solution with Attenuated Total Reflectance Mid-Infrared Spectroscopy and Diamond-like Carbon Protected Waveguides. Anal. Chem. 2004, 76 (2), 384–391.
    50. Mizaikoff, B. Mid-Infrared Evanescent Wave Sensors - a Novel Approach for Subsea Monitoring. Meas. Sci. Technol. 1999, 10 (12), 1185–1194.
    51. Ramer, G.; Lendl, B. Attenuated Total Reflection Fourier Transform Infrared Spectroscopy. In Encyclopedia of Analytical Chemistry; Meyers, R. A., Ed.; John Wiley & Sons, Ltd: Chichester, UK, 2013; p a9287.
    52. Singh, J. S. IR and Raman Spectra with Gaussian-09 Molecular Analysis of Some Other Parameters and Vibrational Spectra of 5-Fluoro-Uracil. Res. Chem. Intermed. 2020, 46 (5), 2457–2479.
    53. Zhao, X.; Cheng, K.; Hao, J.; Liu, D. Preparation of Peracetic Acid from Hydrogen Peroxide, Part II: Kinetics for Spontaneous Decomposition of Peracetic Acid in the Liquid Phase. J. Mol. Catal. Chem. 2008, 284 (1–2), 58–68.
    54. Zhao, X.; Zhang, T.; Zhou, Y.; Liu, D. Preparation of Peracetic Acid from Hydrogen Peroxide. J. Mol. Catal. Chem. 2007, 271 (1–2), 246–252.
    55. Dul’neva, L. V.; Moskvin, A. V. Kinetics of Formation of Peroxyacetic Acid. Russ. J. Gen. Chem. 2005, 75 (7), 1125–1130.

    無法下載圖示 電子全文延後公開
    2027/07/11
    QR CODE