簡易檢索 / 詳目顯示

研究生: 陳玉奇
Chen, Yu-Chi
論文名稱: 神經內分泌胜肽趨同調控虎斑烏賊體液酸鹼恆定之探討
Convergent capacities of neurohypophysial peptides on acid-base regulation in cuttlefish (Sepia pharaonis)
指導教授: 曾庸哲
Tseng, Yung-Che
學位類別: 碩士
Master
系所名稱: 生命科學系
Department of Life Science
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 61
中文關鍵詞: 花枝高碳酸sepiatocinpro-sepiatocin酸鹼調控趨同調控神經內分泌
英文關鍵詞: cuttlefish, hypercapnia, sepiatocin, pro-sepiatocin, acid-base regulation, convergent capacities, neurohypophysial peptides
DOI URL: https://doi.org/10.6345/NTNU202203856
論文種類: 學術論文
相關次數: 點閱:137下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 頭足類動物與硬骨魚類的胚胎對於調控體液酸鹼平衡的模式具有相似性,然而在頭足類動物上,這種生理現象於演化發育上的分子調控機制所知仍有限。本研究運用虎斑烏賊(Sepia pharaonis)的胚胎進行高碳酸的環境刺激,探測催產素同源基因sepiatocin、pro-sepiatocin及其受器sepiatocin-related receptor (spr)的表現,並檢測虎斑烏賊的耐酸能力。研究結果發現:虎斑烏賊的胚胎於不同發育時期能忍受不同程度的碳酸壓力,最低可至pH7.0。而藉由原位雜合分析亦發現spr會表現在虎斑烏賊胚胎的表皮及鰓上,sepiatocin及pro-sepiatocin和zn12標記的神經細胞有共定位的表現,顯示頭足類由神經細胞分泌sepiatocin及pro-sepiatocin。此外,高碳酸的壓力一方面會於不同的時間點顯著刺激pro-sepiatocin、sepiatocin與spr的表現,同時也影響虎斑烏賊胚胎表皮的離子調節蛋白(vha、nbc、nhe3、rhp、nhe3)及p63的基因表現,顯示與sepiatocin相關的激素可能參與體液酸鹼恆定,而頭足類胚胎與硬骨魚胚胎的酸鹼調控機制與表皮調控路徑的相似性應為在生存競爭下,兩者生理機制趨向趨同演化的證據之一。

    Cephalopods were proved to process epithelial acid-base regulatory machinery; however, its evo-devo bases for extracellular pH homeostasis are still poorly understood. In this study, we used embryos of cuttlefish, Sepia pharaonis, to examine integrative expressions of, neurohypophysial hormones (pro-sepiatocin and sepiatocin) and its possible receptor (sepiatocin-related receptor, spr) under CO2-induced acidification. Intact resting respiration data showed that S. pharaonis embryos, whose gills were well developed in stage 24 and stage 28, were capable of surviving under CO2 perturbations as low as to pH7.6 and pH7.0, respectively. In addition, RNA in situ hybridization images indicated that spr2 were expressed in embryonic epithelium and adult gills, the dominant sites for acid-base regulation and pro-sepiatocin and sepiatocin were expressed on the optic lobes. Sepiatocin related genes were found to be upregulated accompanied with those stimulated genes for epithelial acid-base regulation (e.g. nbc, nhe3, rhp and nka) in CO2-acidified condition; moreover, the gill perfusion proved pro-sepiatocin can directly increase the excretion of proton and ammonium. In conclusion, the present work inferred that the promptly activations of sepiatocin and spr might be involved in operating epidermal ion fluxes; accordingly, in order to cope with acid-base disturbances during their oviparous development, cephalopod embryos have evolved sophisticated evolution pathway regarding epithelium differentiation and neurohypophysial hormones regulation.

    中文摘要 5 ABSTRACT 6 INTRODUCTION 7 MATERIALS AND METHODS 14 EXPERIMENTAL ANIMALS 14 CO2 PERTURBATION EXPERIMENT 14 PVF ABIOTIC PARAMETERS 15 Osmolality 15 Ammonium (NH4+) 16 OXYGEN CONSUMPTION 16 PURIFICATION OF TOTAL RNA 17 REVERSE TRANSCRIPTION PCR (RT-PCR) 18 Real-time Quantitative PCR (qPCR) 18 CLONING OF SPR, PRO-SEPIATOCIN AND SEPIATOCIN FRAGMENTS 19 RNA PROBE SYNTHESIS 20 WHOLE MOUNT IN SITU HYBRIDIZATION AND IMMUNOCYTOCHEMISTRY (ICC) 20 in situ hybridization 20 immunocytochemical (ICC) staining 23 PERFUSION EXPERIMENTS ON ISOLATED GILLS 23 STATISTICAL ANALYSIS 24 RESULTS 25 ABIOTIC CONDITIONS IN PVF UNDER HYPERCAPNIC STRESS 25 BASIC METABOLIC RESPONSES OF EMBRYONIC CUTTLEFISH UNDER CO2-INDUCED ACIDIC SEAWATER 25 HYPOPHYSEAL HORMONE SEPIATOCIN-RELATED MRNA EXPRESSIONS IN DIFFERENT TISSUES OF CUTTLEFISH 26 EXPRESSIONS OF SEPIATOCIN- AND ACID-BASE REGULATORY RELATED GENES IN CUTTLEFISH DURING EMBRYOGENESIS 27 SPATIAL EXPRESSIONS OF HYPOPHYSEAL HORMONE SEPIATOCIN-RELATED GENES IN CUTTLEFISH 27 EFFECTS OF HYPERCAPNIC STRESS ON EXPRESSIONS OF SEPIATOCIN-RELATED GENES AND ACID-BASE REGULATORY RELATED GENES IN CUTTLEFISH EMBRYOS 28 EFFECTS OF PRO-SEPIATOCIN PEPTIDE PERFUSION INTO ISOLATED ADULT CUTTLEFISH GILLS 28 DISCUSSION 30 CONCLUSION 36 REFERENCES 37

    Albrecht, J. (2007). Ammonia toxicity in the central nervous system. In Handbook of Neurochemistry and Molecular Neurobiology, A. Lajtha, S.S. Oja, A. Schousboe, and P. Saransaari, eds. (US: Springer), pp. 262–272.
    Baker, D.W., and Brauner, C.J. (2012). Metabolic changes associated with acid–base regulation during hypercarbia in the CO2-tolerant chondrostean, white sturgeon (Acipenser transmontanus). Comp. Biochem. Physiol. A. Mol. Integr. Physiol. 161, 61–68.
    Bale, R., Neveln, I.D., Bhalla, A.P.S., MacIver, M.A., and Patankar, N.A. (2015). Convergent Evolution of Mechanically Optimal Locomotion in Aquatic Invertebrates and Vertebrates. PLoS Biol. 13, e1002123.
    Bardou, I., Leprince, J., Chichery, R., Vaudry, H., and Agin, V. (2010). Vasopressin/oxytocin-related peptides influence long-term memory of a passive avoidance task in the cuttlefish, Sepia officinalis. Neurobiol. Learn. Mem. 93, 240–247.
    Braida, D., Donzelli, A., Martucci, R., Capurro, V., Busnelli, M., Chini, B., and Sala, M. (2012). Neurohypophyseal hormones manipulation modulate social and anxiety-related behavior in zebrafish. Psychopharmacology (Berl.) 220, 319–330.
    Brix, O., Bardgard, A., Cau, A., Colosimo, S.G.C., and Giardina, B. (1989). Oxygen-binding properties of cephalopod blood with special reference to environmental temperatures and ecological distribution. J Exp Zool 252, 34–42.
    Budelmann, B.U., Schipp, R., and von Boletzky, S. (1997). Cephalopoda. In Microscopic Anatomy of Invertebrates, F.W. Harrison, and A.J. Kohn, eds. (New York: Wiley-Liss), p.
    Buresi, A., Baratte, S., Da Silva, C., and Bonnaud, L. (2012). orthodenticle/otx ortholog expression in the anterior brain and eyes of Sepia officinalis (Mollusca, Cephalopoda). Gene Expr. Patterns 12, 109–116.
    Camargo, J.A., and Alonso, Á. (2006). Ecological and toxicological effects of inorganic nitrogen pollution in aquatic ecosystems: A global assessment. Environ. Int. 32, 831–849.
    Cardoso, S.C., Paitio, J.R., Oliveira, R.F., Bshary, R., and Soares, M.C. (2015). Arginine vasotocin reduces levels of cooperative behaviour in a cleaner fish. Physiol. Behav. 139, 314–320.
    Chiao, C.-C., Chubb, C., and Hanlon, R.T. (2015). A review of visual perception mechanisms that regulate rapid adaptive camouflage in cuttlefish. J. Comp. Physiol. A 201, 933–945.
    Chou, M.-Y., Hung, J.-C., Wu, L.-C., Hwang, S.-P.L., and Hwang, P.-P. (2011). Isotocin controls ion regulation through regulating ionocyte progenitor differentiation and proliferation. Cell. Mol. Life Sci. 68, 2797–2809.
    Cole, A.G., and Hall, B.K. (2009). Cartilage differentiation in cephalopod molluscs. Zoology 112, 2–15.
    Conte, F.P. (2012). Origin and Differentiation of Ionocytes in Gill Epithelium of Teleost Fish (Elsevier).
    Donaubauer, H.H. (1981). Sodium-and potassium-activated adenosine triphosphatase in the excretory organs of Sepia officinalis (Cephalopoda). Mar. Biol. 63, 143–150.
    Emanuel, C.F., and Martin, A.W. (1956). The composition of octopus renal fluid. J. Comp. Physiol. A Neuroethol. Sens. Neural. Behav. Physiol. 39, 226–234.
    Fehsenfeld, S., and Weihrauch, D. (2013). Differential acid-base regulation in various gills of the green crab Carcinus maenas: Effects of elevated environmental pCO2. Comp. Biochem. Physiol. - Mol. Integr. Physiol. 164, 54–65.
    Frasnelli, E., Vallortigara, G., and Rogers, L.J. (2012). Left-right asymmetries of behaviour and nervous system in invertebrates. Neurosci. Biobehav. Rev. 36, 1273–1291.
    Gutowska, M.A., Melzner, F., Langenbuch, M., Bock, C., Claireaux, G., and Pörtner, H.O. (2010). Acid–base regulatory ability of the cephalopod (Sepia officinalis) in response to environmental hypercapnia. J. Comp. Physiol. B 180, 323–335.
    Henry, J., Cornet, V., Bernay, B., and Zatylny-Gaudin, C. (2013). Identification and expression of two oxytocin/vasopressin-related peptides in the cuttlefish Sepia officinalis. Peptides 46, 159–166.
    Hochner, B. (2013). How Nervous Systems Evolve in Relation to Their Embodiment: What We Can Learn from Octopuses and Other Molluscs. Brain. Behav. Evol. 82, 19–30.
    Hoeger, U., Mommsen, T.P., O’Dor, R., and Webber, D. (1987). Oxygen uptake and nitrogen excretion in two cephalopods, octopus and squid. Comp. Biochem. Physiol. A Physiol. 87, 63–67.
    Hoegh-Guldberg, O., Cai, R., Poloczanska, E.S., Brewer, P.G., Sundby, S., Hilmi, K., Fabry, V.J., and Jung, S. (2014). The Ocean. Clim. Change 2014 Impacts Adapt. Vulnerability Part B Reg. Asp. Contrib. Work. Group II Fifth Assess. Rep. Intergov. Panel Clim. Change 1655–1731.
    Holmes, R.M., Aminot, A., Kérouel, R., Hooker, B. a, and Peterson, B.J. (1999). A simple and precise method for measuring ammonium in marine and freshwater ecosystems. Can. J. Fish. Aquat. Sci. 56, 1801–1808.
    Horng, J.-L., Hwang, P.-P., Shih, T.-H., Wen, Z.-H., Lin, C.-S., and Lin, L.-Y. (2009). Chloride transport in mitochondrion-rich cells of euryhaline tilapia (Oreochromis mossambicus) larvae. Am. J. Physiol. Cell Physiol. 297, C845–C854.
    Hsu, H.-H., Lin, L.-Y., Tseng, Y.-C., Horng, J.-L., and Hwang, P.-P. (2014). A new model for fish ion regulation: identification of ionocytes in freshwater- and seawater-acclimated medaka (Oryzias latipes). Cell Tissue Res. 357, 225–243.
    Hu, M.Y., Yan, H.Y., Chung, W.-S., Shiao, J.-C., and Hwang, P.-P. (2009). Acoustically evoked potentials in two cephalopods inferred using the auditory brainstem response (ABR) approach. Comp. Biochem. Physiol. A. Mol. Integr. Physiol. 153, 278–283.
    Hu, M.Y., Sucré, E., Charmantier-Daures, M., Charmantier, G., Lucassen, M., Himmerkus, N., and Melzner, F. (2010). Localization of ion-regulatory epithelia in embryos and hatchlings of two cephalopods. Cell Tissue Res. 339, 571–583.
    Hu, M.Y., Tseng, Y.-C., Stumpp, M., Gutowska, M.A., Kiko, R., Lucassen, M., and Melzner, F. (2011a). Elevated seawater pCO2 differentially affects branchial acid-base transporters over the course of development in the cephalopod Sepia officinalis. AJP Regul. Integr. Comp. Physiol. 300, R1100–R1114.
    Hu, M.Y., Tseng, Y.-C., Lin, L.-Y., Chen, P.-Y., Charmantier-Daures, M., Hwang, P.-P., and Melzner, F. (2011b). New insights into ion regulation of cephalopod molluscs: a role of epidermal ionocytes in acid-base regulation during embryogenesis. AJP Regul. Integr. Comp. Physiol. 301, R1700–R1709.
    Hu, M.Y., Lee, J.-R., Lin, L.-Y., Shih, T.-H., Stumpp, M., Lee, M.-F., Hwang, P.-P., and Tseng, Y.-C. (2013). Development in a naturally acidified environment: Na+/H+-exchanger 3-based proton secretion leads to CO2 tolerance in cephalopod embryos. Front. Zool. 10, 51.
    Hu, M.Y., Guh, Y.-J., Stumpp, M., Lee, J.-R., Chen, R.-D., Sung, P.-H., Chen, Y.-C., Hwang, P.-P., and Tseng, Y.-C. (2014). Branchial NH4+-dependent acid–base transport mechanisms and energy metabolism of squid (Sepioteuthis lessoniana) affected by seawater acidification. Front. Zool. 11, 55.
    Hu, M.Y., Hwang, P.-P., and Tseng, Y.-C. (2015). Recent advances in understanding trans-epithelial acid-base regulation and excretion mechanisms in cephalopods. Tissue Barriers 3, e1064196.
    Hwang, P.-P. (2009). Ion uptake and acid secretion in zebrafish (Danio rerio). J. Exp. Biol. 212, 1745–1752.
    Hwang, P.-P., and Chou, M.-Y. (2013). Zebrafish as an animal model to study ion homeostasis. Pflüg. Arch. - Eur. J. Physiol. 465, 1233–1247.
    Hwang, P.-P., and Lee, T.-H. (2007). New insights into fish ion regulation and mitochondrion-rich cells. Comp. Biochem. Physiol. A. Mol. Integr. Physiol. 148, 479–497.
    Hwang, P.-P., Lee, T.-H., and Lin, L.-Y. (2011). Ion regulation in fish gills: recent progress in the cellular and molecular mechanisms. AJP Regul. Integr. Comp. Physiol. 301, R28–R47.
    Jozet-Alves, C., Viblanc, V.A., Romagny, S., Dacher, M., Healy, S.D., and Dickel, L. (2012). Visual lateralization is task and age dependent in cuttlefish, Sepia officinalis. Anim. Behav. 83, 1313–1318.
    Kreiss, C.M., Michael, K., Bock, C., Lucassen, M., and Pörtner, H.-O. (2015). Impact of long-term moderate hypercapnia and elevated temperature on the energy budget of isolated gills of Atlantic cod (Gadus morhua). Comp. Biochem. Physiol. A. Mol. Integr. Physiol. 182, 102–112.
    Lema, S.C., Sanders, K.E., and Walti, K.A. (2015). Arginine Vasotocin, Isotocin and Nonapeptide Receptor Gene Expression Link to Social Status and Aggression in Sex-Dependent Patterns. J. Neuroendocrinol. 27, 142–157.
    Llpiński, M.R. (1998). Cephalopod life cycles: patterns and exceptions. South Afr. J. Mar. Sci. 20, 439–447.
    Martos-Sitcha, J.A., Fuentes, J., Mancera, J.M., and Martínez-Rodríguez, G. (2014). Variations in the expression of vasotocin and isotocin receptor genes in the gilthead sea bream Sparus aurata during different osmotic challenges. Gen. Comp. Endocrinol. 197, 5–17.
    Martos-Sitcha, J.A., MartínezRodríguez, G., Mancera, J.M., and Fuentes, J. (2015). AVT and IT regulate ion transport across the opercular epithelium of killifish (Fundulus heteroclitus) and gilthead sea bream (Sparus aurata). Comp. Biochem. Physiol. A. Mol. Integr. Physiol. 182, 93–101.
    Miller, D.C., Poucher, S., Cardin, J.A., and Hansen, D. (1990). The acute and chronic toxicity of ammonia to marine fish and a mysid. Arch. Environ. Contam. Toxicol. 19, 40–48.
    Motohashi, E., Hasegawa, S., Mishiro, K., and Ando, H. (2009). Osmoregulatory responses of expression of vasotocin, isotocin, prolactin and growth hormone genes following hypoosmotic challenge in a stenohaline marine teleost, tiger puffer (Takifugu rubripes). Comp. Biochem. Physiol. A. Mol. Integr. Physiol. 154, 353–359.
    Navet, S., Baratte, S., Bassaglia, Y., Andouche, A., Buresi, A., and Bonnaud, L. (2014). Neurogenesis in Cephalopods: “eco-evo-devo” approach in the the cuttlefish Sepia officinalis (Mollusca-Cephalopoda). J. Mar. Sci. Te Chnology 22, 15–24.
    Nilsson, G.E., Dixson, D.L., Domenici, P., McCormick, M.I., Sørensen, C., Watson, S.-A., and Munday, P.L. (2012). Near-future carbon dioxide levels alter fish behaviour by interfering with neurotransmitter function. Nat. Clim. Change 2, 201–204.
    O’Dor, R. (2002). Telemetered cephalopod energetics: Swimming, soaring, and blimping. Integr Comp Biol 42, 1065–1070.
    O’Dor, R.K., and Webber, D.M. (1986). The constraints on cephalopods: why squid aren’t fish. Can J Zoo 64, 1591–1605.
    Polese, G., Bertapelle, C., and Di Cosmo, A. (2015). Role of olfaction in Octopus vulgaris reproduction. Gen. Comp. Endocrinol. 210, 55–62.
    Pörtner, H.O. (1990). An analysis of the effects of pH on oxygen binding by squid (Illex illecebrosus, Loligo pealei) haemocyanin. J Exp Biol 150, 407–424.
    Pörtner, H.O. (1994). Coordination of metabolism, acid-base regulation and haemocyanin function in cephalopods. Mar Fresh Behav Physiol 25, 131–148.
    Pörtner, H.O., and Zielinski, S. (1998). Environmental constraints and the physiology of performance in squids. Afr J Mar Sci 20, 207–221.
    Pörtner, H.-O., Webber, D.M., Boutilier, R.G., and O’Dor, R.K. (1991). Acid-Base Regulation in Exercising Squid. Am. J. Physiol. 261, R239–R246.
    Potts, W. (1965). Ammonia excretion in Octopus dolfeini. Comp Biochem Physiol 14, 339–355.
    Randall, D.J., and Tsui, T.K.N. (2002). Ammonia toxicity in fish. Mar. Pollut. Bull. 45, 17–23.
    Saito, D. (2003). Gonadotropin-releasing hormones modulate electrical activity of vasotocin and isotocin neurons in the brain of rainbow trout. Neurosci. Lett. 351, 107–110.
    Sakamoto, T., Ogawa, S., Nishiyama, Y., Akada, C., Takahashi, H., Watanabe, T., Minakata, H., and Sakamoto, H. (2015). Osmotic/ionic status of body fluids in the euryhaline cephalopod suggest possible parallel evolution of osmoregulation. Sci. Rep. 5, 14469.
    Sarazin, G., Michard, G., and Prevot, F. (1999). A rapid and accurate spectroscopic method for alkalinity measurements in sea water samples. Water Res. 33, 290–294.
    Schipp, R., and von Boletzky, S. (1976). The pancreatic appendages of dibranchiate cephalopods. Zoomorph 86, 81–98.
    Shih, T.-H., Horng, J.-L., Hwang, P.-P., and Lin, L.-Y. (2008). Ammonia excretion by the skin of zebrafish (Danio rerio) larvae. AJP Cell Physiol. 295, C1625–C1632.
    Shih, T.-H., Horng, J.-L., Lai, Y.-T., and Lin, L.-Y. (2013). Rhcg1 and Rhbg mediate ammonia excretion by ionocytes and keratinocytes in the skin of zebrafish larvae: H+-ATPase-linked active ammonia excretion by ionocytes. AJP Regul. Integr. Comp. Physiol. 304, R1130–R1138.
    Smith, M.R., and Caron, J.-B. (2010). Primitive soft-bodied cephalopods from the Cambrian. Nature 465, 469–472.
    Stumpp, M., Hu, M., Casties, I., Saborowski, R., Bleich, M., Melzner, F., and Dupont, S. (2013). Digestion in sea urchin larvae impaired under ocean acidification. Nat. Clim. Change 3, 1044–1049.
    Takuwa-Kuroda, K., Iwakoshi-Ukena, E., Kanda, A., and Minakata, H. (2003). Octopus, which owns the most advanced brain in invertebrates, has two members of vasopressin/oxytocin superfamily as in vertebrates. Regul. Pept. 115, 139–149.
    Thermes, V., Lin, C.-C., and Hwang, P.-P. (2010). Expression of Ol-foxi3 and Na+/K+-ATPase in ionocytes during the development of euryhaline medaka (Oryzias latipes) embryos. Gene Expr. Patterns 10, 185–192.
    du Vigneaud, V., Ressler, C., and Trippett, S. (1953). The sequence of amino acids in oxytocin, with a proposal for the structure of oxytocin. J. Biol. Chem. 205, 949–957.
    Watanabe, Y., Sakihara, T., Mukuda, T., and Ando, M. (2007). Antagonistic effects of vasotocin and isotocin on the upper esophageal sphincter muscle of the eel acclimated to seawater. J. Comp. Physiol. B 177, 867–873.
    Wells, M.J., and O’Dor, R.K. (1991). Jet propulsion and the evolution of the cephalopods. Bull. Mar. Sci. 49, 419–432.
    Williamson, R., and Chrachri, A. (2004). Cephalopod Neural Networks. NeuroSignals 13, 87–98.
    Wollesen, T., Loesel, R., and Wanninger, A. (2009). Pygmy squids and giant brains: Mapping the complex cephalopod CNS by phalloidin staining of vibratome sections and whole-mount preparations. J. Neurosci. Methods 179, 63–67.
    Wu, S.-C., Horng, J.-L., Liu, S.-T., Hwang, P.-P., Wen, Z.-H., Lin, C.-S., and Lin, L.-Y. (2010). Ammonium-dependent sodium uptake in mitochondrion-rich cells of medaka (Oryzias latipes) larvae. AJP Cell Physiol. 298, C237–C250.

    無法下載圖示 本全文未授權公開
    QR CODE