簡易檢索 / 詳目顯示

研究生: 張貿淳
Chang, Mao-Chun
論文名稱: 基於阻抗控制之髖膝外骨骼機器人輔助人體坐站轉換
Assistance of a Hip-Knee Exoskeleton Robot for Sit-To-Stand Transition Using Impedance Control
指導教授: 陳俊達
Chen, Chun-Ta
口試委員: 鄭江河
Cheng, Chiang-Ho
鄭鴻儀
Cheng, Hong-Yih
陳俊達
Chen, Chun-Ta
口試日期: 2023/01/12
學位類別: 碩士
Master
系所名稱: 機電工程學系
Department of Mechatronic Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 74
中文關鍵詞: 下肢外骨骼阻抗控制線性擴展狀態觀測器快速終端滑模控制
英文關鍵詞: Lower limb, exoskeleton, Impedance control, Linear extend state observer, Fast terminal sliding mode control
研究方法: 實驗設計法
DOI URL: http://doi.org/10.6345/NTNU202300197
論文種類: 學術論文
相關次數: 點閱:104下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文「基於阻抗控制之髖膝外骨骼機器人輔助人體坐站轉換」旨在使用阻抗控制開發可輔助人體做坐站轉換之穿戴式外骨骼機器人。本研究探討下肢穿戴式外骨骼機器人的外型設計、控制模型及其應用,主要功能是對尚有行動能力的人進行動力輔助,提供坐站轉換之輔助。其控制是以阻抗模型(Impedance Model)為基礎,基於線性擴展狀態觀測器(Linear Extend State Observer, LESO)來估測人體對外骨骼的干擾,並加入不同的控制法來分析其結果及相關應用探討。最後並以輔助正常人及輕度巴金森氏症患者進行結果分析,結果顯示本研究所開發的下肢外骨骼機器人可提供穿戴者做坐到站轉換的輔助。

    This paper "Assistance of a Hip-Knee Exoskeleton Robot for Sit-To-Stand Transition Using Impedance Control" aims to use impedance control to develop a wearable exoskeleton robot that can assist human to do sit-to-stand transition. This research discusses the design, control model and application of the lower limb wearable exoskeleton robot. The main function is to provide power assistance for people who are still able to move, and to provide assistance for sit-to-stand transition. The control is based on the Impedance Model with a Linear Extend State Observer to observe the disturbance error and add different control methods to analyze the results and discuss the related applications. Finally, it assists normal individual and mild Parkinson's disease patients and analyze the results. The results show that the lower limb exoskeleton robot developed in this study which can provide assistance for the wearer to do sit-to-stand transition.

    中文摘要 i Abstract ii 誌謝 iii 目錄 iv 第一章 緒論 1 1.1 前言 1 1.2 文獻回顧 4 1.3 論文研究目的及架構 10 第二章 髖-膝外骨骼機器人設計 11 2.1 外骨骼機器人系統架構 11 2.2 髖關節設計 15 2.3 膝關節設計 16 2.4 踝關節設計 18 2.5 其他相關設計 20 第三章 髖膝外骨骼機器人控制器設計 28 3.1 外骨骼機器人之阻抗模型 28 3.2 阻抗模型之LADRC控制器(Impedance model-LADRC) 35 3.3 阻抗模型之具線性狀態擴展觀測器之快速終端滑模控制器(Impedance model-LESO-FTSMC) 41 第四章 髖-膝外骨骼機器人之坐站實驗 44 4.1 坐站實驗介紹 44 4.2 STS各關節角度追隨 47 4.3 STS腳底壓力 51 4.4 STS人體腳底壓力中心位置 52 4.5 STS人體的x方向重心位置 53 4.6 STS軀幹彎曲速度及軀幹角度 54 4.7 STS關節馬達之輸出命令 56 第五章 巴金森氏症患者之坐站實驗 58 第六章 結論與未來展望 71 參考文獻 72 附錄一 74

    [1]國家發展委員會人口推估查詢系統網頁-高齡人口占比趨勢。取自: https://pop-proj.ndc.gov.tw/chart.aspx?c=10&uid=66&pid=60, 2020年8月.
    [2]SUITX - PHOENIX醫療外骨骼。取自: https://www.suitx.com/phoenix-medical-exoskeleton
    [3]Ekso Bionics - EksoNR。取自: https://eksobionics.com/eksonr/
    [4]W. Huo, S. Mohammed, Y. Amirat, and K. Kong, “Active Impedance Control of a Lower Limb Exoskeleton to Assist Sit-To-Stand Movement.” IEEE International Conference on Robotics and Automation (ICRA), 2016.
    [5]W. Huo, H. Moon, M. A. Alouane, V. Bonnet, J. Huang, Y. Amirat, R. Vaidyanathan, and S. Mohammed, “Impedance Modulation Control of a Lower Limb Exoskeleton to Assist Sit-to-Stand Movements.” IEEE Transactions on Robotics, Vol. 38, iss. 2, pp. 1230-1249, Apr 2022.
    [6]J. H. Hernández, S. S. Cruz, R. López-Gutiérrez, A. González-Mendoza, and R. Lozano, “Robust nonsingular fast terminal sliding-mode control for Sit-to-Stand task using a mobile lower limb exoskeleton.” ScienceDirect Control Engineering Practice, Vol. 101, Aug 2020.
    [7]X. Yu and M. Zhihong, “Fast Terminal Sliding-Mode Control Design for Nonlinear Dynamical Systems.” IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, Vol. 49, iss. 2, pp. 261-264, Feb 2002.
    [8]C.-F. Chen, Z.-J. Du, L. He, Y.-J. Shi, J.-Q. Wang, G.-Q. Xu, Y. Zhang, D.-M. Wu, and W. Dong, “Development and hybrid control of an electrically actuated lower limb exoskeleton for motion assistance.” IEEE Access, Vol. 7, pp. 169107-169122, Nov 2019.
    [9]Y. Li, S. S. Ge, C. Yang, X. Li, and K. P. Tee, “Model-free Impedance Control for Safe Human-Robot Interaction.” IEEE International Conference on Robotics and Automation, pp. 6021-6026, 2011.
    [10]H. T. Tran, H. Cheng, H. Rui, X. Lin, M. K. Duong, and Q. Chen, “Evaluation of a Fuzzy-Based Impedance Control Strategy on a Powered Lower Exoskeleton.” SpringerLink International Journal of Social Robotics, Vol. 8, pp. 103–123, 2016.
    [11]M. Gilli, K. Serbest, and E. Kayaoglu, “The effect of body weight on joint torques in teenagers: Investigation of sit-to-stand movement.” ScienceDirect Clinical Biomechanics, Vol. 83, Mar 2021.
    [12]D.A. Winter, Biomechanics and Motor Control of Human Movement, 4th, John Wiley & Sons, 2009.
    [13]D. A. Reyes-Uquillas and T. Hsiao, “Online Motion Adjustment Using Compliance Control for a Multi-Axis Robot Manipulator.” IEEE International Automatic Control Conference (CACS), Nov 2017.
    [14]N. Hogan, “Impedance Control: An Approach to Manipulation.” IEEE American Control Conference, Jun 1984.
    [15]L.-W. Tsai, Robot Analysis: The Mechanics of Serial and Parallel Manipulators, 1st, John Wiley & Sons, 1999.
    [16]Chang Cheng, Chuan, “Research of a Hip-Knee Exoskeleton Robot on Gait Rehabilitationr.” National Taiwan Normal University, Master’s Thesis, June 2021.
    [17]X. Fan, Y. He, P. Cheng, and M. Fang, “Fuzzy-Type Fast Terminal Sliding-Mode Controller for Pressure Control of Pilot Solenoid Valve in Automatic Transmission.” IEEE Access, Vol. 7, pp. 122342 - 122353, Aug 2019.

    無法下載圖示 電子全文延後公開
    2025/02/28
    QR CODE