研究生: |
張群榮 Chang, Chun-Rong |
---|---|
論文名稱: |
應用於高速電路之π型靜電放電防護設計 π-Shape ESD Protection Design for High-Speed Circuit |
指導教授: |
林群祐
Lin, Chun-Yu |
口試委員: |
林群祐
Lin, Chun-Yu 彭盛裕 Peng, Sheng-Yu 蔡銘憲 Tsai, Ming-Hsien |
口試日期: | 2023/04/27 |
學位類別: |
碩士 Master |
系所名稱: |
電機工程學系 Department of Electrical Engineering |
論文出版年: | 2023 |
畢業學年度: | 111 |
語文別: | 英文 |
論文頁數: | 69 |
中文關鍵詞: | 全晶片靜電放電防護 、π型分散式電路 、高速電路 |
英文關鍵詞: | whole-chip ESD protection, π-shape discrete circuits, high-speed circuit |
研究方法: | 實驗設計法 |
DOI URL: | http://doi.org/10.6345/NTNU202300530 |
論文種類: | 學術論文 |
相關次數: | 點閱:269 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文主要研究應用在高速電路之靜電放電防護設計,所有測試電路皆在CMOS製程中完成設計,透過分散式電路設計與低電容防護元件的組合,達到不影響高速性能並提供有效靜電放電防護的效果,並與傳統既有之二極體與矽控整流器做比較。
在本論文中,提出了一款新型的電源線觸發之矽控整流器 (PLTSCR),π-PLTSCR可以不用透過電源線間靜電放電箝制電路 (power-rail ESD clamp circuit) 便能夠達成四個模式 (PS, PD, NS, and ND) 的靜電排放。由於無需使用電源線間靜電放電箝制電路,電路的面積便可以節省45%。本次提出的新型設計,除了可以應用在高速電路的防護,並且還可以省下更多的成本。
最後,為了驗證防護電路是否可以真正保護內部電路,本論文使用轉阻放大器 (Trans-impedance amplifier, TIA),作為被保護的內部電路,分別搭配π-diode、π-SDSCR、π-RTSCR以及π-PLTSCR進行防護,並且進行高頻量測與靜電耐受度量測,確認防護電路的功能是否正常以及其對轉阻放大器的性能影響。透過實驗結果可知,創新設計可以提供給TIA電路6kV的靜電耐受度,且造成的增益下降大約為1dB,並未對性能造成過大影響。
This paper mainly studies the design of electrostatic discharge protection applied in high-speed circuits. All test circuits are designed in CMOS process. Through the combination of distributed circuit design and low-capacitance protective elements, it achieves effective electrostatic discharge protection without affecting high-speed performance, and is compared with traditional diodes and silicon-controlled rectifiers.
In this paper, a new type of power line-triggered silicon-controlled rectifier (PLTSCR) is proposed. The π-PLTSCR can achieve electrostatic discharge in four modes (PS, PD, NS, and ND) . The circuit area can be saved by 45%. This new design can not only be applied to the protection of high-speed circuits but also can save more costs.
Finally, in order to verify whether the protective circuit can truly protect the internal circuit, this paper uses a trans-impedance amplifier (TIA) as the protected internal circuit and performs high-frequency measurement and electrostatic tolerance measurement to confirm whether the protective circuit is functioning normally and its impact on the performance. Through the experimental results, it is found that does not have a significant impact on the performance.
[1] S. H. Voldman, ESD Physics and Devices. New York: Wiley, 2005.
[2] A. Amerasekera and C. Duvvury, ESD in Silicon Integrated Circuits, John Wiley & Sons, 2002.
[3] O. Semenov, H. Sarbishaei, and M. Sachdev, ESD Protection Devices and Circuit Design for Advanced CMOS Technologies. Amsterdam: Springer, 2008.
[4] T. Lim, J. Jimenez, P. Benech, J. -M. Fournier, B. Heitz and P. Galy, "Geometrical impact on RF performances of broadband ESD self protected transmission line in advanced CMOS technologies," 2012 IEEE International Integrated Reliability Workshop Final Report, South Lake Tahoe, CA, USA, 2012.
[5] Microelectronics Test Method Standard MIL-STD-883D Method 301 5.7“Electrostatic discharge sensitivity classification,” US Department of Defense, 1991.
[6] ESD Association and JEDEC Solid State Technology Association, “Human body model (HBM) - component level,” ANSI/ESDA/JEDEC JS-001-2017, 2017.
[7] Industry Council on ESD Target Levels, “White Paper 1: A case for lowering component level HBM/MM ESD specifications and requirements,” June. 2018.
[8] E. Grund, T. Chang, R. Watkins, C. Burke, J. Katz and R. Gauthier, "A New CDM Discharge Head for Increased Repeatability and Testing Small Pitch Packages," 2018 40th Electrical Overstress/Electrostatic Discharge Symposium (EOS/ESD), Reno, NV, USA, 2018.
[9] ESD Association and JEDEC Solid State Technology Association, “Charged device model (CDM) -component level,” ANSI/ESDA/JEDEC JS-002-2014, 2014.
[10] Industry Council on ESD Target Levels, “White Paper 2: A case for lowering component level CDM ESD specifications and requirements,” May. 2021.
[11] H. Wang, C. Jiao, L. Zhang, D. Zeng, D. Yang, Y. Wang, and Z. Yu, "A low-power ESD-protected 24GHz receiver front-end with π-type input matching network," 2011 IEEE International Symposium of Circuits and Systems (ISCAS), 2011.
[12] M. D. Ker, "Whole-chip ESD protection design with efficient VDD-to-VSS ESD clamp circuits for submicron CMOS VLSI," in IEEE Transactions on Electron Devices, vol. 46, no. 1, pp. 173-183, Jan. 1999.
[13] F. Roger, W. Reinprecht and R. Minixhofer, "Process variation aware ESD design window considerations on a 0.18μm analog, mixed-signal high voltage technology," EOS/ESD Symposium Proceedings, 2011, pp. 1-7.
[14] P. Mahajan, S. Suresh, A. Quah, F. Rival, R. Jain, U. Singh, R. Gauthier, and K. J. Hwang, "Robust ESD Implanted 5V GGNMOS Clamp Design and Process optimization with maximized ESD Design Window," 2019 Electron Devices Technology and Manufacturing Conference (EDTM), 2019, pp. 172-175.
[15] C. -T. Wang, Y. -C. Chen, T. -H. Tang and K. -C. Su, "ESD protection design with adjustable snapback behavior for 5-V application in 100nm CMOS process," 2013 IEEE International Reliability Physics Symposium (IRPS), 2013.
[16] A. Z. H. Wang, H. Feng, R. Zhan H. Xie, G. Chen, Q. Wu, X. Guan, Z. Wang, and C. Zhang, "A review on RF ESD protection design," in IEEE Transactions on Electron Devices, vol. 52, no. 7, pp. 1304-1311, July 2005.
[17] C. -Y. Lin, M. -L. Fan, M. -D. Ker, L. -W. Chu, J. -C. Tseng and M. -H. Song, "Improving ESD robustness of stacked diodes with embedded SCR for RF applications in 65-nm CMOS," 2014 IEEE International Reliability Physics Symposium, 2014.
[18] J. Chen, C. Y. Lin, R. K. Chang, M. D. Ker, T. C. Tzeng, and T. C. Lin, “ESD protection design for high-speed applications in CMOS technology,” 2016 IEEE 59th International Midwest Symposium on Circuits and Systems (MWSCAS), 2016, pp. 1-4.
[19] C. -T. Wang, T. -H. Tang and K. -C. Su, "Latch-up free ESD protection design with SCR structure in advanced CMOS technology," 2011 International Reliability Physics Symposium, 2011, pp. 4C.3.1-4C.3.4.
[20] Qiang Cui, S. Dong and Y. Han, "Investigation of waffle structure SCR for electro-static discharge (ESD) protection," 2012 IEEE International Conference on Electron Devices and Solid State Circuit (EDSSC), 2012, pp. 1-4.
[21] M. -H. Tsai, S. S. H. Hsu, F. -L. Hsueh, C. -P. Jou, S. Chen and M. -H. Song, "A Wideband Low Noise Amplifier With 4 kV HBM ESD Protection in 65 nm RF CMOS," in IEEE Microwave and Wireless Components Letters, vol. 19, no. 11, pp. 734-736, Nov. 2009.
[22] C. -Y. Lin, M. -L. Fan, M. -D. Ker, L. -W. Chu, J. -C. Tseng and M. -H. Song, "Improving ESD robustness of stacked diodes with embedded SCR for RF applications in 65-nm CMOS," 2014 IEEE International Reliability Physics Symposium, 2014.
[23] C. Lin and C. Chen, “Low-C ESD protection design with dual resistor-triggered SCRs in CMOS technology,” in IEEE Transactions on Device and Materials Reliability, vol. 18, no. 2, pp. 197-204, June 2018.
[24] C.-Y. Lin and R.-K. Chang, “Test structures of LASCR device for RF ESD protection in nanoscale CMOS process,” in Proc. IEEE International Conference on Microelectronic Test Structures, 2016, pp.100-103.
[25] M. -D. Ker and B. -J. Kuo, "Optimization of broadband RF performance and ESD robustness by π-model distributed ESD protection scheme," 2004 Electrical Overstress/Electrostatic Discharge Symposium, 2004.
[26] J. Li, K. Chatty, R. Gauthier, R. Mishra, and C. Russ, “Technology scaling of advanced bulk CMOS on-chip ESD protection down to the 32nm node,” in Proc. EOS/ESD Symp., 2009, pp. 69-75.
[27] C. T. Yeh, M. D. Ker, and Y. C. Liang, “Optimization on layout style of ESD protection diode for radio-frequency front-end and high-speed I/O interface circuits,” IEEE Trans. Device and Materials Reliability, vol. 10, no. 2, pp. 238-246, June 2010.
[28] 台灣半導體研究中心-高頻電路與天線量測實驗室
[29] S. Cao, J. -H. Chun, S. G. Beebe and R. W. Dutton, "ESD Design Strategies for High-Speed Digital and RF Circuits in Deeply Scaled Silicon Technologies," in IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 57, no. 9, pp. 2301-2311, Sept. 2010.
[30] Z. Piatek, W. A. Pleskacz and J. F. Kolodziejski, "Transmission Line Pulsing Tester For On-chip ESD Protection Testing," Proceedings of the International Conference Mixed Design of Integrated Circuits and System, 2006. MIXDES 2006., Gdynia, Poland, 2006, pp. 595-599.
[31] A. Shukla, R. Gamad and R. Raikwar, "Design of a CMOS Optical Receiver Front-End Using 0.18 μm Technology," Wireless Engineering and Technology, Vol. 4 No. 1, 2013, pp. 46-53.