簡易檢索 / 詳目顯示

研究生: 江明謙
Jiang, Ming-Qian
論文名稱: 鯨魚演算法應用於三動力複合動力系統之最佳化能量管理
Optimal Energy Management Strategy Using Whale Optimization Algorithm for a Three-Power-Source Hybrid Powertrain
指導教授: 洪翊軒
Hung, Yi-Hsuan
口試委員: 陳瑄易
Chen, Syuan-Yi
吳建勳
Wu, Chien-Hsun
洪翊軒
Hung, Yi-Hsun
口試日期: 2020/07/13
學位類別: 碩士
Master
系所名稱: 工業教育學系
Department of Industrial Education
論文出版年: 2021
畢業學年度: 110
語文別: 中文
論文頁數: 123
中文關鍵詞: 複合動力系統能量管理控制策略鯨魚演算法人工蜂群演算法最小等校油耗策略
英文關鍵詞: Hybrid Power System, Energy Management Control Strategy, Whale Optimization Algorithm, Artificial Bee Colony, Equivalent Consumption Minimization Strategy
DOI URL: http://doi.org/10.6345/NTNU202101481
論文種類: 學術論文
相關次數: 點閱:185下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究旨於開發鯨魚演算法 (Whale Optimization Algorithm, WOA) 應用於三動力複合動力車系統之最佳化能量管理,並透過硬體嵌入式系統 (Hardware-In-the-Loop, HIL) 進行即時 (Real-time) 運算,驗證開發之能量管理系統於真實環境應用可行性。三動力源複合動力車之系統搭載43 kW的內燃機引擎、30 kW的馬達與15 kW的一體式啟動發電機 (Integrated Starter Generator, ISG),搭配1.872 kW-h儲能鋰電池,整車重量為1,368 kg。於能量管理系統中,WOA透過三種行為模式進行最佳化搜索,分別為:(1) 探勘 (Exploration)、(2) 收縮環繞 (Shrinking Encircling)、(3) 螺旋更新 (Spiral Updating),最大迭代次數為300次,共有80隻鯨魚進行最佳化能量管理。
    本研究將開發之WOA與另外三種控制策略進行能耗比較:(1) 基本規則庫 (Rule-based):依工程經驗與元件性能所撰寫模式切換之策略,共設計五種模式 (煞車回充、純電動、複合動力、純引擎、引擎回充);(2) 最小等效油耗策略 (Equivalent Consumption Minimization Strategy, ECMS):透過全域格點搜尋 (Global Grid Search) 各種行車條件的所有可行解,進而倒推最小等效油耗時之動力分配方式;(3) 人工蜂群演算法 (Artificial Bee Colony, ABC):主要由三種蜜蜂角色分工進行最佳化搜尋,分別為:(i) 工蜂 (Employed bee)、(ii) 觀察蜂 (Onlooker Bee)、(iii) 偵查蜂 (Scout Bee),即時運算當下行車需求之最佳動力分配方式。
    各控制策略運行一次NEDC行車形態下,Rule-based、ECMS、ABC、WOA的等效燃油消耗量分別為[330.7g, 289.5g, 270.2g, 267.5g];運行一次FTP-72行車形態下的等效燃油消耗量分別為[342.9g, 291.4g, 278.9g, 275.9g]。在一次NEDC中,以Rule-based為基底相比的能耗改善百分比是[12.458%, 18.294%, 19.110%];在一次FTP-72中,能耗改善百分比是[15.018%, 18.664%, 19.539%]。Rule-based與WOA於10L燃油與起始電量90%的鋰電池耗盡下,於重複NEDC循環下的總行駛里程分別為[259.80 km, 276.66 km];於重複FTP-72循環下的總行駛里程分別為[258.93 km, 282.56 km]。在重複NEDC循環下,以Rule-based為基底相比的里程改善百分比為6.489%;在重複FTP-72循環下,里程改善百分比為9.126%。由此可知,導入最佳化方法於複合動力車輛進行動力分配,可有效降低整車能耗,進而提高行駛里程。本研究透過兩台快速雛型控制器,建立一即時模擬平台。驗證由WOA為核心開發之能量管理系統於真實環境應用可行性,在兩種行車型態中,於電腦模擬與HIL環境運算之等效油耗結果有高達98%的相似度,藉此,將可實現未來於實車應用之願景。

    The purpose of this study is to develop the Whale Optimization Algorithm (WOA) for optimal energy management in a three-power-source hybrid powertrain. The real-time simulation and Hardware-In-the-Loop systems (HIL) were conducted to verify the feasibility of the developed energy management system (EMS) operates in real time. The subsystems of the vehicle include a 43kW internal combustion engine, a 30kW motor, 15kW integrated starter generator (ISG), and a 1.872kW-h lithium battery. The vehicle weight is 1,368 kilograms. About the EMS, WOA uses three behavior patterns to achieve the optimal search: (1) Exploration, (2) Shrinking Encircling, (3) Spiral Updating. The overall number of iterations was 300, and 80 whales were used to carry out optimal energy management.

    This study will compare the energy consumption of the developed WOA with three other control strategies: (1) Rule-based:The strategy of mode switch designed by the engineering experience and component performance. There are five control modes which are brake regenerative, electric vehicle, hybrid power, engine only, and engine regeneration. (2) Equivalent Consumption Minimization Strategy (ECMS):Use the grid to global search for feasible solutions under all driving conditions, and find the power distribution that minimizes the equivalent fuel consumption. (3) Artificial Bee Colony Algorithm (ABC):Bees are divided into three roles to achieve optimal search: (1) Employed bee, (2) Onlooker bee, (3) Scout bee. The best power distribution for current driving demand was calculated in real time.
    The equivalent fuel consumptions of Rule-based, ECMS, ABC and WOA were 330.7g, 289.5g, 270.2g and 267.5g, respectively, under one NEDC driving pattern. The equivalent fuel consumptions of each control strategy were 342.9g, 291.4g, 278.9g and 275.9g, respectively, under one FTP-72 driving pattern. The improvement percentage of energy consumption were 12.458%, 18.294% and 19.110%, respective, for ECMS, ABC and WOA compared to Rule-based control strategy under a NEDC driving pattern. The improvement percentage of energy consumption were 15.018%, 18.664% and 19.539%, respectively under a FTP-72 driving pattern. Before the 10 liters of fuel and initial SOC 0.9 of lithium battery run out, driving distances for the Rule-based and the WOA were 259.80km and 279.66km, respectively, under NEDC driving cycles repeatedly. And 258.93km and 282.56km were under FTP-72 driving cycles repeatedly. Under the NEDC, the improvement percentage of traveling mileage was 6.489% compared with Rule-based control, and 9.126% for FTP-72. From above, to import optimization methods to distribute power in hybrid vehicles which can reduce the energy consumption effectively, as well as improve the driving range. This study establishes a real-time simulation platform through two rapid prototype controllers. Under two driving pattern types, the similarity of equivalent fuel consumption results of computer simulation and HIL are as high as 98%. According to the experimental results, it proves that the control can be applied to actual vehicles in the future.

    謝 誌 i 摘 要 ii Abstract iv 目 次 vii 表 次 x 圖 次 xi 第一章 緒論 1 1.1 引言 1 1.2 研究動機 3 1.3 研究目的 6 1.4 研究方法 7 1.5 文獻回顧 9 1.6 論文架構 14 第 二 章 系統架構與動態模型 15 2.1 系統架構 15 2.2 行車型態 19 2.3 駕駛人行為 19 2.4 內燃機引擎 21 2.5 高功率電動馬達 22 2.6 一體式啟動發電機 23 2.7 儲能鋰電池 24 2.8 傳動系統 25 2.9 車輛動態模型 26 2.10 硬體嵌入式系統架構 28 2.10.1 Real-time模型 28 2.10.2 快速雛型控制器 30 2.10.3 硬體嵌入式系統 (HIL) 30 第 三 章 能量管理策略 33 3.1 能量管理系統介紹 33 3.2 基本規則庫控制策略 34 3.3 最佳化目標函數訂定 39 3.4 最小等效油耗法控制策略 41 3.5 人工蜂群演算法控制策略 43 3.5.1 人工蜂群演算法概念與步驟介紹 43 3.5.2 人工蜂群演算法控制變數與動力分配比關係 46 3.5.3 人工蜂群演算法參數設置 47 3.5.4 人工蜂群演算法流程介紹 48 3.6 鯨魚演算法控制策略 50 3.6.1 鯨魚演算法概念與步驟介紹 50 3.6.2 鯨魚演算法控制變數與動力分配比關係 54 3.6.3 鯨魚演算法參數設置 54 3.6.4 鯨魚演算法流程介紹 55 第 四 章 模擬結果與討論 57 4.1 動力元件基本性能探討 57 4.2 各策略車速追蹤結果 58 4.3 各控制策略模式切換與動力分配比結果 63 4.4 各控制策略動力輸出結果 72 4.5 各控制策略於NEDC行車型態一次循環動力分配結果 76 4.6 各控制策略於FTP-72行車型態一次循環動力分配結果 79 4.7 最佳動力分配結果驗證 82 4.8 能耗比較結果 90 4.8.1 一次行車型態能耗結果 90 4.8.2加滿10L燃油能耗結果 94 4.9 硬體嵌入式系統結果驗證 99 第 五 章 結論與未來工作 109 5.1 結論 109 5.2 未來工作與建議 112 參考文獻 113 符號彙整 121

    [1] Bp plc, BP Statistical Review of World Energy, UK: British Petroleum, 2017.
    [2] S. G. Osborn, et al. “Methane contamination of drinking water accompanying gas-well drilling and hydraulic fracturing,” in Proceedings of the National Academy of Sciences USA, vol. 108, no. 20, pp. 8172–8176, May 17, 2010.
    [3] C. Mooney, “The truth about fracking,” Scientific American, pp.80-85, Nov, 2011.
    [4] R. K. Pachauri, M. R. Allen, V. R. Barros, J. Broome, et al, “Climate change 2014 synthesis report,” Intergovernmental Panel on Climate Change, vol. 5, 2015.
    [5] 李永展,永續發展: 大地反撲的省思,2003。
    [6] 曹俊漢,“全球治理與氣候變遷:評估哥本哈根會議(COP15)決策機制的衝擊與對策”,歐美研究,89-148頁,第43卷,第一期,2003。
    [7] 李河清、李元薇,“氣候變遷調適與人類移動:對 COP21 與《巴黎協定》的反思”,台灣人權學刊,27-42頁,第三卷,第三期,2016。
    [8] 行政院環境環保署,中華民國國家溫室氣體排放清冊報告,2019。
    [9] E. Morganti and M. Browne, “Technical and operational obstacles to the adoption of electric vans in France and the UK: An operator perspective”, Transport Policy, vol. 63, pp. 90-97, 2018.
    [10] D. Sperling, “Electric vehicles: Approaching the tripping point”, Bulletin of the Atomic Scientists, vol. 74, pp. 11-18, 2018.
    [11] 能源政策專案報告,立法院第9屆第5會期,2018。
    [12] 鄭勝文,“電動車輛專輯”,機械月刊,第25卷,第8期,1999。
    [13] K. S. Gallagher and E. Muehlegger, “Giving green to get green? Incentives and consumer adoption of hybrid vehicle technology,” J. of Environmental Economics and Management, vol. 61, pp. 1-15, 2011.
    [14] S. M. Lukic and A. Emadi, “Effects of drivetrain hybridization on fuel economy and dynamic performance of parallel hybrid electric vehicles,” IEEE Trans. Veh. Tech., vol. 53, no. 2, pp. 385-389, 2004.
    [15] R. C.Duncan. 2000. The Peak of World Oil Production and the Road to the Olduvai Gorge.Available:http://jayhanson.us/
    [16] B. Propfe, D. Kreyenberg, J Wind, and S Schmid, “Market penetration analysis of electric vehicles in the German passenger car market towards 2030,” International Journal of Hydrogen Energy, vol. 38, pp. 5201-5208, 2013.
    [17] K. T. Chau, and C. C. Chan, “Emerging energy-efficient technologies for hybrid electric vehicles,” Proceedings of the IEEE, vol 95, pp. 821-835, 2007.
    [18] E. Karden, S. Ploumen, B. Fricke, T. Miller, and K. Snyder, “Energy storage devices for future hybrid electric vehicles,” Journal of power sources, vol.168, pp. 2-11, 2007.
    [19] “Global EV Outlook 2017”, International Energy Agency, Jun, 2017.
    [20] J. P. Ribau, C. M. Silva, and J. M.C. Sousa, “Efficiency, cost and life cycle CO2 optimization of fuel cell hybrid and plug-in hybrid urban buses,” Applied Energy, vol. 129, pp. 320-335, 2014.
    [21] 經濟部能源局。取自http://www.tier.org.tw/energymonthly/
    [22] C. T. Chung and Y. H. Hung, “Energy improvement and performance evaluation of a novel full hybrid electric motorcycle with power split e-CVT,” Energy Conversion and Management, vol. 86, pp. 216-225, 2014.
    [23] K. B. Sheu, “Analysis and evaluation of hybrid scooter transmission systems,” Applied Energy, vol. 84, no. 12, pp. 1289-1304, 2007.
    [24] K. B. Sheu, “Conceptual design of hybrid scooter transmissions with planetary gear-trains,” Applied Energy, vol. 84(5), pp. 526-541, 2007.
    [25] K. B. Sheu and T. H. Hsu, “Design and implementation of a novel hybrid-electric-motorcycle transmission,” Applied Energy, vol. 83, no. 9, pp. 959-974, 2006.
    [26] P. Zhang, F. Yan, and C. Du, “A comprehensive analysis of energy management strategies for hybrid electric vehicles based on bibliometrics,” Renewable and Sustain Energy Reviews., vol. 48, pp.88-104, 2015.
    [27] S. Mirjalili, A. Lewis, “The Whale Optimization Algorithm,”. Advances in Engineering Software, vol. 95, pp. 51-67, 2016.
    [28] M. Wikstrom, L. Hansson, P. Alvfors, “Socio-technical experiences from electric vehicle utilisation in commercial fleets,” Applied Energy., vol. 123, pp. 82-93, 2014.
    [29] A. Khaligh, and Z. Li, “Battery, ultracapacitor, fuel cell, and hybrid energy storage systems for electric, hybrid electric, fuel cell, and plug-in hybrid electric vehicles: State of the art,” IEEE Trans. Vehicular Tech., vol. 59, no. 6, pp. 2806-14, 2010.
    [30] T. Katrašnik, “Impact of vehicle propulsion electrification on Well-to-Wheel CO2 emissions of a medium duty truck,” Applied Energy., vol. 108, pp. 236-47, 2013.
    [31] Y.H. Hung, and C.H. Wu, “An integrated optimization approach for a hybrid energy system in electric vehicles,” Applied Energy., vol. 98, pp. 479-90, 2012.
    [32] N.C. Onat, M. Kucukvar, and O. Tatari, “Conventional, hybrid, plug-in hybrid or electric vehicles? State-based comparative carbon and energy footprint analysis in the United States,” Applied Energy., vol. 150, pp. 36-49, 2015.
    [33] H. Yoo, S.K. Sul, Y. Park, and J. Jeong, “System integration and power-flow management for a series hybrid electric vehicle using supercapacitors and batteries,” IEEE Trans., vol. 44, no. 1, pp. 108–114, 2008.
    [34] G. Ren, G. Ma, and N. Cong, “Review of electrical energy storage system for vehicular applications,” Renewable and Sustainable Energy Reviews., vol. 41, pp. 225-236, 2015.
    [35] K.Ç. Bayindir, M.A. Gözüküçük, and A. Teke. “A comprehensive overview of hybrid electric vehicle: Powertrain configurations, powertrain control techniques and electronic control units,” Energy Conversion and Management., vol. 52, no 2, pp. 1305-1313, 2011.
    [36] J.L. Torres, R. Gonzalez, A. Gimenez, and L. Lopez, “Energy management strategy for plug-in hybrid electric vehicles. A comparative study,” Applied Energy., vol. 113, pp. 816-24, 2014.
    [37] N.J. Schouten, M.A. Salmanb, and N.A. Kheir, “Energy management strategies for parallel hybrid vehicles using fuzzy logic,” Control Engineering Practice., vol. 11, pp. 171–7, 2003.
    [38] B.C. Chen, Y.Y. Wu, and H.C. Tsai, “Design and analysis of power management strategy for range extended electric vehicle using dynamic programming,” Applied Energy., vol. 113, pp. 1764-74, 2014.
    [39] J. Liu and H. Peng, “Modeling and control of a power-split hybrid vehicle,” IEEE Trans Control Syst Tech., vol. 16, pp. 1242-1251, 2008.
    [40] G. Paganelli, Y. Guezennec, and G. Rizzoni, “Optimizing control strategy for hybrid fuel cell vehicle,” SAE Paper., no. 2002-01-0102, 2002.
    [41] R. C. Eberhart, and J. Kennedy, “Particle Swarm Optimization,” IEEE International conference on neural networks, vol. 4, pp. 1942-1948, 1995.
    [42] R. C. Eberhart, and J. Kennedy, “A New Optimizer Using Particle Swarm Theory,” Proceedings of the Sixth International Symposium on Micro Machine and Human Science, IEEE Service Center, pp. 39-43, 1995.
    [43] J.B. Oliveira, J. Boaventura-Cunha, P.M. Oliveira, and H. Freire, “A swarm intelligence-based tuning method for the sliding mode generalized predictive control”, ISA Trans., vol. 53, pp. 1501-1515, 2014.
    [44] A. Alfi, and H. Modares, “System identification and control using adaptive particle swarm optimization,” Applied. Mathematical Modelling, vol. 35, pp. 1210-1221, 2011.
    [45] Y.Y. Hong, F.J. Lin, S.Y. Chen, Y.C. Lin, and F.Y. Hsu, “A novel adaptive elite-based particle swarm optimization applied to VAR optimization in electric power systems,” Mathematical Problems in Engineering, vol. 2014, pp. 14, 2014.
    [46] D. Karaboga, “Artificial bee colony algorithm,” Brain Corporation, vol. 5(3), no. 6915, 2005.
    [47] Y. Lin, H. Jia, Y. Yang, G. Tian, F. Tao, L. Ling, “An improved artificial bee colony for facility location allocation problem of end-of-life recovery network,” Journal of Cleaner Production, vol. 205, pp. 134-144, 2018.
    [48] M. Zhang, Y.T. Tan, J.H. Zhu, et al, “Modeling and simulation of improved artificial bee colony algorithm with data-driven optimization,” Simulation Modelling Practice and Theory, 2018.
    [49] X.S. Yang, “A New Metaheuristic Bat-Inspired Algorithm,” Nature Inspired Cooperative Strategies for Optimization, Studies in Computational Intelligence, Springer Berlin, vol. 284, pp. 65-74, 2010.
    [50] X.S. Yang, “Bat Algorithm for Multi-objective Optimisation,” International Journal of Bio-Inspired Computation, vol. 3, pp. 267-274, 2011.
    [51] K. Khan, and A. Sahai, “A Comparison of BA, GA, PSO, BP and LM for Training Feed Forward Neural Network in E-learning Context,” International Journal of Intelligent Systems and Applications, vol. 4, pp. 23-29,2012.
    [52] X. S. Yang, and A. H. Gandomi, “Bat Algorithm: A Novel Approach for Global Engineering Optimization,” Engineering Computations, vol. 29, pp. 464-486, 2012.
    [53] X.S. Yang, and S. Fong, “Bat Algorithm for Topology Optimization in Microelectronic Application,” IEEE, 2012.
    [54] S. Yilmaz, and E. U. Kucuksille, “A New Modification Approach on Bat Algorithm for Solving Optimization Problems,” Applied Soft Computing, vol. 28, pp. 259-275, 2015.
    [55] I. Trivedi, P. Jangir, A. Kumar, N. Jangir and R. Totlani, “A Novel Hybrid PSO-WOA Algorithm for Global Numerical Functions Optimization,” Advances in Computer and Computational Sciences, vol. 554, pp. 53-60, 2016.
    [56] M. Mafarja, and S. Mirjalili, “Hybrid Whale Optimization Algorithm with Simulated Annealing for Feature Selection,” Neurocomputing, vol. 260, pp. 302-312, 2017.
    [57] Z. H. Yan, J. X. Sha, B. Liu, and J. Lu, “An Ameliorative Whale Optimization Algorithm for Multi-Optimal Allocation of Water Resources in Handan, China,” Water, vol. 87, pp. 1-29, 2018.
    [58] G. Kaur, and S. Arora, “Chaotic Whale Optimization Algorithm,” Journal of Computational Design and Engineering, vol. 128, pp. 1-28, 2018.
    [59] D. B. Prakash, and C. Lashuminarayana, “Optimal Siting of Capacitors in Radial Distribution Network Using Whale Optimization Algorithm,” Alexandria Engineering Journal, pp. 1-11, 2016.
    [60] C. H. Santhan Kumar, and R. Srinivasa Rao, “A Novel Global MPP Tracking of Photovoltaic System based on Whale Optimization Algorithm,” Journal of Renewable Energy Development, vol. 5, pp. 225-232, 2016.
    [61] M. Rohani, G. Shafabakhsh, A. Haddad, and E. Asnaashari, “The Workflow Planning of Construction Sites Using Whale Optimization Algorithm (WOA),” The Turkish Online Journal of Design, Art and Communication, pp. 2938-2950, 2016.
    [62] P. Dinakara Prasad Reddy, V. C. Veera Reedy, and T. Gowri Manohara, “Optimal Renewable Resources Placement in Distribution Networks by Combined Power Loss Index and Whale Optimization Algorithm,” Journal of Electrical and Information Technology, pp. 1-17, 2017.
    [63] D. Ramaswamy, R. McGee, S. Sivashankar, A. Deshpande, J. Allen, K. Rzemien, and W. Stuart, “A case study in hardware-in-the-loop testing: Development of an ECU for a hybrid electric vehicle,” SAE Technical Paper., no. 2004-01-0303, 2004.
    [64] H. K. Fathy, Z. S. Filipi, J. Hagena, and J. L. Stein, “Review of hardware-in-the-loop simulation and its prospects in the automotive area. In Defense and Security Symposium,” International Society for Optics and Photonics, pp. 62280E-62280E, 2006.
    [65] 施伯霖,“ 細菌覓食演算法應用於三動力複合動力車系統之最佳能量管理與變速策略 ”,國立臺灣師範大學,碩士論文,2017。
    [66] P.L. Shih, Y.H. Hung, S.Y. Chen, and C.H. Wu, “Bacterial foraging algorithm for the optimum on-line energy management of a three-power-source hybrid powertrain,” Journal of Environmental Protection and Ecology, vol. 18, no. 3, pp. 1169-1178, 2017.
    [67] Y.H. Hung, Y.M. Tung and C.H. Chang, “Optimal control of integrated energy management/mode switch timing in a three-power-source hybrid powertrain,” Applied Energy, vol. 173, pp. 184-196, 2016.
    [68] S.Y. Chen, Y.H. Hung and C.H. Wu, “An integrated optimal energy management/gear-shifting strategy for an electric continuously variable transmission hybrid powertrain using bacterial foraging algorithm,” Mathematical Problems in Engineering, vol. 2016, pp. 15, 2016.
    [69] G. Paganelli, Y. Guezennec and G. Rizzoni, “Optimizing Control Strategy for Hybrid Fuel Cell Vehicle,” SAE 2002 World Congress & Exhibition, 01-0102, 2002.
    [70] 李鎧麟,“ 人工蜂群演算法應用於三電力電動車系統之最佳能量管理 ”,國立臺灣師範大學,碩士論文,2018。

    無法下載圖示 電子全文延後公開
    2026/09/10
    QR CODE