簡易檢索 / 詳目顯示

研究生: 林家齊
Chia-Chi Lin
論文名稱: 改善經驗模態分解法混波問題與計算效率之研究
Improving the Computational Efficiency and Mode Mixing Phenomena for Empirical Mode Decomposition Algorithm
指導教授: 吳順德
Wu, Shuen-De
學位類別: 碩士
Master
系所名稱: 機電工程學系
Department of Mechatronic Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 65
中文關鍵詞: 快速經驗模態分解法經驗模態分解法減少取樣增加取樣微分法
英文關鍵詞: empirical mode decomposition, down sampling, differential operator
論文種類: 學術論文
相關次數: 點閱:306下載:17
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 經驗模態分解法(Empirical mode decomposition, EMD)是近年來用於非穩態訊號的時頻分析與濾波工具。此方法能將訊號拆解成數個零均值的單頻段震盪訊號與一個殘餘量,黃鍔稱單頻段訊號為本質模態函數(Intrinsic Mode Function, IMF)。雖然EMD已經在很多領域被證明其有效性,但這個方法仍存在許多的問題亟待被解決,這些問題包含:(1)停止準則之選取;(2)邊界效應;(3)訊號混波現象;(4)篩選程序之效率性。本論文的主要目的是改善混波問題與提升篩選程序的效率。
    本論文提出利用微分運算與減少取樣的方式分別改善EMD混波問題與計算效率,實驗結果證實:
    (1) 透過微分運算提高訊號之振幅比,可以將部份頻段的訊號成分分離出來,使得混波問題大幅降低,並且提高EMD拆解能力。
    (2) 透過減少取樣的運算方式減少極值點搜尋與立方雲線內插的計算時間,使得EMD整體的計算效率提升。
    本論文的貢獻是改善EMD拆解的計算速度以及提高EMD拆解能力,進而提升訊號分析與濾波的能力。

    A new nonlinear technique for time frequency analysis, referred to as empirical mode decomposition (EMD), has recently been pioneered by N.E. Huang et al., for adaptively representing nonstationary signals as sums of zero-mean components, terms Intrinsic Mode Functions (IMFs). Although EMD had been proved its feasibility and efficiency for many applications, some drawbacks and problems are needed to be resolved which including the selection of stop criterion; the process of boundary effect; the mode mixing phenomena; the computational efficiency of sifting process.
    In this dissertation, the mode-mixing problem and computational efficiency of EMD algorithm is improved by using differential operator and down sampling technique respectively. Several experimental results demonstrate that:
    1. The computational cost can be reduced dramatically when the down-sampling technique is applied.
    2. The mode-mixing problem can be resolved by applying a differentiail operator to the target signal.

    致謝 ………………………………………………………………… I 中文摘要 ……………………………………………………………… II 英文摘要 ……………………………………………………………… III 目錄 …………………………………………………………………… IV 圖目錄 …………………………………………………………………… V 表目錄 ……………………………………………………………… VI 第一章 緒論................................... 1 1.1 前言............................ 1 1.2 研究動機與目的................... 2 1.3 論文架構........................ 3 第二章 經驗模態分解法文獻探討.................... 4 2.1 經驗模態分解法................... 4 2.2 重要課題........................ 7 2.2.1 停止準則................ 7 2.2.2 邊界問題................ 10 2.2.3 混波問題................ 13 2.2.4 演算法效率的提升......... 17 第三章 改善經驗模態分解法混波問題之架構與分析結果... 28 3.1 傳統經驗模態分解法混波問題......... 28 3.2 改善混波問題..................... 28 3.3 結果與討論....................... 30 3.4 小結............................ 39 第四章 提升經驗模態分解法計算效率之架構與分析結果... 40 4.1 傳統經驗模態分解法計算效率低落原因.. 40 4.2 快速經驗模態分解法................ 40 4.3 實驗結果........................ 43 4.3.1 計算效率評估............ 43 4.3.2 誤差評估方式............. 49 4.4 快速經驗模態分解法用於真實訊號與加入雜訊訊號 53 4.5 小結.......................... 58 第五章 結論與未來展望........................... 59 5.1 本論文總結....................... 59 5.2 未來展望........................ 60 參考文獻 ....................................... 61

    [1] H. Li, L. Yang, and D. Huang, “The Study of the Intermittency Test Filtering Character of Hilbert–Huang Transform,” Mathematics and Computers in Simulation, Vol. 70 , Iss. 1, pp. 22-32, 2005.
    [2] W. S. Chan, Y. L. Xu, X. L. Ding, and W. J. Dai, “An Integrated GPS–Accelerometer Data Processing Technique for Structural Deformation Monitoring,” Journal of Geodesy , Vol. 80, Iss. 12, pp. 705-719, 2006.
    [3] Y. X. Huang, F. G. Schmitt, Z. M. Lu, and Y. L. Liu, “An Amplitude-Frequency Study of Turbulent Scaling Intermittency Using Empirical Mode Decomposition and Hilbert Spectral Analysis,” A Letters Journal Exploring The Frontiers of Physics, Vol. 84, 40010 (6pages), 2008.
    [4] M. O. Mendez, J. Corthout, S. V. Huffel, M. Matteucci, T. Penzel, S. Cerutti, and A. M. Bianchi, “Automatic Screening of Obstructive Sleep Apnea from the ECG Based on Empirical Mode Decomposition and Wavelet Analysis,” Physiological Measurement, Vol. 31, Iss. 3, pp. 273-289, 2010.
    [5] M. Blanco-Velasco, B. Weng, and K. E. Barner, “ECG Signal Denoising and Baseline Wander Correction Based on the Empirical Mode Decomposition,” Computers in Biology and Medicine, Vol. 38, Iss. 1, pp. 1-13, 2008.
    [6] R. Balocchi, D. Menicucci, E. Santarcangelo, L. Sebastiani , A. Gemignani, B. Ghelarducci, and M. Varanini, “Deriving the Respiratory Sinus Arrhythmia from the Heartbeat Time Series Using Empirical Mode Decomposition,” Chaos Solitons & Fractals, Vol. 20, Iss. 1, pp. 171-177, 2004.
    [7] S. Ranganathan, R. Raghunathan, and M. Randy, “A Modified Empirical Mode Decomposition (EMD) Process for Oscillation Characterization in Control Loops,” Control Engineering Practice, Vol. 15, No. 9, pp. 1135-1148, 2007.
    [8] K. Khaldi, A. O. Boudraa, A. Bouchikhi, and M. T. H. Alouane, “Speech Enhancement via EMD,” Eurasip Journal on Advances in Signal Processing, Article Number: 873204, 2008.
    [9] M. K. I. Molla and K. Hirose, “Single-Mixture Audio Source Separation by Subspace Decomposition of Hilbert Spectrum,” IEEE Transactions on Audio Speech and Language Processing, Vol. 15, Iss. 3, pp. 893-900, 2007.
    [10] Y. Zheng, Q. Lin, Fuliang Yin, and H. Liang, “Speech Enhancement Using ICA with EMD-Based Reference,” Independent Component Analysis and Blind Signal Separation, Proceedings, Vol. 3889, pp. 739-746, 2006.
    [11] J. F. Khan, R. R. Adhami, S. M. A. Bhuiyan, and K. E. Barner, “Empirical Mode Decomposition Based Interest Point Detector,” IEEE International Conference on Acoustics, Speech and Signal Processing ICASSP 2008, Las Vegas, Nevada, USA, 2008.
    [12] F. Wu and L. Qu, “An Improved Method for Restraining the End Effect in Empirical Mode Decomposition and Its Applications to the Fault Diagnosis of Large Rotating Machinery,” Journal of Sound and Vibration, Vol. 314, Iss. 3-5, pp. 586-602, 2008.
    [13] S. J. Loutridis, “Instantaneous Energy Density as a Feature for Gear Fault Detection,” Mechanical Systems and Signal Processing, Vol.20, pp. 1239–1253, 2006.
    [14] Z. K. Penga, P. W. Tseb, and F.L. Chu, “An Improved Hilbert–Huang Transform and Its Application in Vibration Signal Analysis,” Journal of Sound and Vibration, Vol. 286, Iss. 1-6, pp. 187–205. 2005.
    [15] N. E. Huang, Z. Shen, S. R. Long, M. C. Wu, H. H. Shih, Q. Zheng, N.-C. Yen, C. C. Tung, and H. H. Liu, “The Empirical Mode Decomposition and the Hilbert Spectrum for Nonlinear and Nonstationary Time Series Analysis,” Proc. R. Soc. Lond. A, Vol. 454, pp. 903-995, 1998.
    [16] S. D. Wu, S. Y. Chen, and H. B. Chen, “Survey on the Recent Developments of Empirical Mode Decomposition,” Journal of National Taipei University of Technology, Vol. 42-1, pp.31-50, 2009.
    [17] G. Rilling, P. Flandrin, and P. Gonçalvés, “On Empirical Mode Decomposition and Its Algorithms,” IEEE-EURASIP Workshop on Nonlinear Signal and Image Processing NSIP-03, Grado, Italy, pp. 8-11, 2003.
    [18] J. Cheng, D. Yu, and Y. Yang, “Research on the Intrinsic Mode Function (IMF) Criterion in EMD Method,” Mechanical Systems and Signal Processing, Vol. 20, pp. 817-824, 2005.
    [19] N. E. Huang, M. C. Wu, S. R. Long, S. S. P. Shen, W. Qu, P. Gloersen, and K. L. Fan, “A Confidence Limit for the Empirical Mode Decomposition and Hilbert Spectrum Analysis,” Proc. R. Soc. Lond. A, Vol. 459, pp. 2317-2345, 2003.
    [20] B. Xuan, Q. Xie and S. Peng, “EMD Sifting Based on Bandwidth,” IEEE Signal Processing Letters, Vol. 14, No. 8, pp. 537-540, 2007.
    [21] K. Zeng and M. X. He, “A Simple Boundary Process Technique for Empirical Mode Decomposition,” IEEE International Geoscience and Remote Sensing Symposium IGARSS '04, Vol. 6, pp. 4258-4261, 2004.
    [22] Z. Zhao and Y. Wang, “A New Method for Processing End Effect in Empirical Mode Decomposition,” IEEE International Conference on Circuits and Systems for Communications ICCSC 2007, pp. 841-845, 2007.
    [23] J. P. Zhao and D. J. Huang, “Mirror Extending and Circular Spline Function for Empirical Mode Decomposition Method,” Journal of Zhejiang University, Science, Vol. 2, Iss.3, pp.247-252, 2001.
    [24] J. Wang, Y. Peng, and X. Peng, “Similarity Searching Based Boundary Effect Processing Method for Empirical Mode Decomposition,” Electronics Letters, Vol. 43, Iss. 1, pp.58-59, 2007.
    [25] 任達千、吳昭同與嚴拱標,「EMD端點效應的評價指標及抑制端點效應的窗函數法」,製造業自動化,第29卷,第1期,民國96年1月,頁21-24。
    [26] G. Rilling and P. Flandrin, “One or Two Frequency? The Empirical Mode Decomposition Answers,” IEEE Transaction on Signal Processing, Vol. 56, No. 1, pp. 85-95, 2008.
    [27] M. Feldman, “Analytical Basics of the EMD: Two Harmonics Decomposition,” Mechanical Systems and Signal Processing, Vol. 23, pp. 2059–2071, 2009.
    [28] M. G. Frei and I. Osorio, “Intrinsic Time-scale Decomposition: Time- Frequency-Energy Analysis and Real- Time Filtering of Non-stationary Signals,” Proc. R. Soc. Lond. A, Vol. 463, No. 2078, p.p. 321-342, 2007.
    [29] L. Y. Lu, “Fast Intrinsic Mode Decomposition of Time Series Data with Sawtooth Transform,” ORACLE Technical Report, 2007.
    [30] L. Y. Lu, “Fast Intrinsic Mode Decomposition and Filtering of Time Series Data,” ORACLE Technical Report, 2008.
    [31] P. Flandrin, G. Rilling, and P. Gonçalvés, “Empirical Mode Decomposition as a Filter Bank,” IEEE Signal Processing Letters, Vol. 11, No. 2, pp.112-114, Feb. 2004.
    [32] P. Flandrin and P. Gonçalvés, “Empirical Mode Decomposition as Data- Driven Wavelet-Like Expansions,” International Journal of Wavelets, Multiresolution and Information Processing, Vol. 2, No. 4, pp. 1-20, 2004.
    [33] S. K. Mitra (2006), Digital Signal Processing, 3rd Ed., McGRAW.Hill International Edition, 2006.

    下載圖示
    QR CODE