研究生: |
林偉文 |
---|---|
論文名稱: |
雙颱環境下台灣海峽中尺度線狀對流之個案研究 |
指導教授: | 簡芳菁 |
學位類別: |
碩士 Master |
系所名稱: |
地球科學系 Department of Earth Sciences |
論文出版年: | 2010 |
畢業學年度: | 98 |
語文別: | 中文 |
論文頁數: | 87 |
中文關鍵詞: | 中尺度線狀對流 、颱風 、中尺度高壓 、鞍形場 |
論文種類: | 學術論文 |
相關次數: | 點閱:183 下載:5 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
2006年8月9日桑美、寶發颱風之環流輻合區位於台灣上空,東吉島南方出現橫跨台灣海峽且生命期長達18小時的中尺度強線狀對流(Mesoscale Convective Line,以下簡稱MCL)。根據雷達觀測可將其生命期之0~5 h定義為「發展期」,為寶發留下之微弱雨帶在原地發展;第5~8 h定義為「成熟滯留期」,特徵為大於50 dBZ之回波近似滯留,且其西側向西南方彎曲,內部的對流胞由東側發展向西側傳送。第8-15 h為「成熟移動期」,此期MCL往北移動約80 km,且回波之中段垂直結構隨高度向南傾斜,強度仍維持在50 dBZ以上。第15-18 h為「消散期」,在MCL南北兩側出現張裂分離且回波迅速減弱。
WRF模擬顯示,在MCL生成之前,雙颱之外圍環流越過中央山脈後,因絕熱增溫作用,於背風側產生南北兩個中尺度低壓。同時,桑美外圍風場在台灣海峽北部受到地形管道效應影響,低層產生東北風噴流,而寶發外圍氣流在中央山脈南部附近出現繞山作用,在高屏近海產生低層東南風噴流,兩者造成風速風切,導致台灣西部近海處北側、南側分別生成一個氣旋式、反氣旋式渦漩,且與兩中尺度低壓疊合,使台灣海峽呈現鞍形氣流場分佈。模擬顯示MCL對流胞激發位置是兩渦漩之南北風輻合處,且較強的偏北風遇到較冷偏南風被迫抬起產生上衝流。此外,兩颱風為MCL持續提供一南一北對流不穩定與高可用位能之環境。成熟移動期因北風向中層延伸,隨高度向南傾斜之MCL的南側低層出現伴隨冷池的中尺度高壓,此與MCL往北移動有密切相關,亦使MCL由PS型轉為TS型。當動力、熱力作用明顯減弱時,MCL進入消散期。
朱佩君、鄭永光、王洪慶、陶祖鈺, 2005: 颱風螺旋雨帶的數值模擬研究。科學通報, 50-5, 486-494。
林李耀、郭鴻基,1999: 颮線基本結構的數值模擬研究。大氣科學,27-4,319-339。
林李耀、郭鴻基,2000: 不同水氣垂直結構的颮線模擬測試。大氣科學,28-2,143-160。
陳泰然、周鴻祺、林宗嵩、楊進賢, 1996: 台灣海峽北部與鄰近地區春夏中尺度對流系統之氣候特徵。大氣科學, 24-3, 145-168。
陳泰然、沈里音,1996: 台灣梅雨季海峽北部與鄰近地區線狀對流之環境條件。大氣科學,24,233-245。
陳泰然、王重傑、周鴻祺、楊進賢, 2002: TAMEX IOP-2 颮線之結構特徵研究。大氣科學,30-4,351-375。
陳泰然、王重傑、周鴻祺, 2003: TAMEX IOP-13 颮線個案特徵之觀測研究。大氣科學, 31-2, 131-156。
葉青青,1990 : TAMEX IOP # 13 長生命期雨帶的降水結構分析。國立中央大學碩士論文,121pp.
黃維平,2002: 二維非靜力模式對颮線之數值模擬。國立臺灣大學大氣科學研究所碩士論文,87pp.。
潘大綱、顏自雄、蔡晉東、任亦偉,2004: 台灣地區春季颮線個案分析。第八屆大氣科學學術研討會。
鄧仁星、陳景森,1990: 台灣地區颮線系統之環境分析。大氣科學,18,149-158。
魏志憲、何台華、張茂興、李文兆, 2006: 梅雨季台灣南部近海準線狀對流系統的特性分析。 大氣科學, 34-2, 157-175。
簡芳菁與林勝峰,2004:冬季冷鋒個案之數值研究。大氣科學,32,141-160。
AMS, 2000:Glossary of meteorology, second edition. American Meteorologial Society.
Barnes, G. M., E. J. Zipser, D.Jorgensen , and F.Marks, Jr., 1983: Mesoscale and convective structure of a hurricane rainband. J.Atmos. Sci., 40, 2125-2173.
Barnes, G. M., and K. Sieckman, 1984: The environment of fast- and slow-moving tropical mesoscale convective cloud lines. Mon. Wea. Rev., 112, 1782-1794.
Barnes, G. M. , and G. J. Stossmeister, 1986: The structure and decay of a rainband in hurricane Irene (1981). Mon. Wea. Rev., 114, 2590-2601.
Barnes, G. M., J. F.Gamache, M. A. Lemone , and G. J. Stossmeister, 1991: A convective cell in a Hurricane rainband. Mon. Wea. Rev.,119,776-793.
Biggerstaff, M. I., and R. A. Houze Jr., 1991: Kinematic and precipitation structure of the 10–11 June 1985 squall line. Mon. Wea. Rev., 119, 3034-3065.
Bluestein, H. B., and M. H. Jain, 1985: Formation of mesoscale lines of precipitation : severe squall lines in Oklahoma during the spring. J.Atmos. Sci., 42, 1711-1732.
Chen, G. T.-J., and C.-C. Yu,1988: Study of low-level jet and extremely heavy rainfall over northern Taiwan in the Mei-Yu season. J.Atmos. Sci., 116, 884~891.
Chien, F.-C., and Y.-H. Kuo, 2006: Topographic effects on a wintertime cold Front in Taiwan, Mon. Wea. Rev., 134, 3297-3316.
Chong, M., P. Amayenc, G. Scialom and J. Testud, 1987 : A tropical squall line observed during the COPT 81 experiment in West Africa. PartⅠ:kinematic structure inferred from dual-Doppler radar data. Mon. Wea. Rev., 115, 670-694.
Churchill, D. D., and R. A. Houze, Jr., 1991: Effects of radiation and turbulence on the diabatic heating and water budget of the stratiform region of a tropical cloud cluster. J. Atmos. Sci. , 48, 903-922.
Eastin, M. D., and M. C. Link, 2009: Miniature supercells in an offshore outer rainband of hurricane Ivan (2004). Mon. Wea. Rev., 137, 2081-2104.
Fernandez, W., 1982: A review of downdrafts at the rear of tropical squall lines. Bulletin A.M.S., 63-11, 1285-1293.
Fovell, R. G., and Y. Ogura, 1988: Numerical simulation of a midlatitude squall line in two dimensions. J. Atoms. Sci., 45, 3846-3879.
Frank, W. M., 1978: The Life Cycles of GATE Convective Systems. J. Atoms. Sci., 35, 1256-1264.
Fujita, T.,1979: Objective, operation, and results of Project NIMROD. Preprints, 11 th Conf. onSevere Local Storms, Kansas City, MO, Amer. Meteor. Soc., 259-266.
Gamache, J. F., and R. A. Houze, Jr., 1982 : Mesoscale air motions associated with a tropical squall line. Mon. Wea. Rev., 110, 118-135.
Chen, G. T. J., and H. C. Chou, 1993: General characteristics of squall lines observed in TAMEX. Mon. Wea. Rev., 121, 726-733.
Heymsfield, G. M., and S. Schotz, 1985: Structure and evolution of a severe Squall line over Oklahoma. Mon. Wea. Rev., 113, 1563-1589.
Houze, R. A., 1977 : Structure and dynamics of a tropical squall-line system. Mon. Wea. Rev., 105, 1540-1567.
Houze, R. A., Jr., 1993: Mesoscale convective system. Cloud Dynamics. Academic Press, Inc., 334-404.
Houze, R. A., Jr., and J. Cetrone, S. R. Brodzik, S. S. Chen, W. Zhao, W. C. Lee, J. A. Moore, G. J. Stossmeister, M. M. Bell, R. F. Rogers, 2006: The hurricane rainband and intensity change experiment: Observations and modeling of hurricanes Katrina, Ophelia, and Rita. Bulletin of the American Meteorological Society, 87, 1503-1521.
Janjić, Z. I., 1994: The step-mountain Eta coordinate model: Further developments of the convection, viscous sublayer, and turbulence closure schemes. Mon. Wea. Rev., 122, 927-945.
Janjić, Z. I., 2000: Comments on “Development and evaluation of a convection scheme for use in climate models”, J. Atoms. Sci., 57, 3686-3686.
Johnson, H. J., and M. E. Nichools, 1983 : A composite analysis of the boundary layer accompanying a tropical squall line. Mon. Wea. Rev., 111, 308-319.
Johnson, R. H., S. L. Aves, P. E. Ciesielski, and T. D. Keenan, 2005: Organization of oceanic convection during the onset of the 1998 East Asian summer monsoon. Mon. Wea. Rev., 133, 131-148.
Jorgensen, D. P., M. A. LeMone, and S. B. Trier, 1997: Structure and evolution of the 22 February 1993 TOGA COARE squall line: Aircraft observations of precipitation, circulation, and surface energy fluxes. J. Atmos. Sci. , 54, 1961-1985.
Jou, J.-D. B., and S.-M. Deng, 1991: Structure of a low-level jet and its roul in triggering and organizing moist convection over Taiwan: A TAMEX study. Terre. Atmos. Ocea.,3, 39-58.
LeMone, M. A., E. J. Zipser, and S. B. Trier, 1998: The role of environmental shear and thermodynamic conditions in determining the structure and evolution of mesoscale convective systems during TOGA COARE. J. Atmos. Sci., 55, 3493-3518.
Lilly, D. K., 1979: The dynamical structure and evolution of thunderstorms and squall lines. Ann. Rev. Earth Planet. Sci., 7, 117-171.
Lin, Y.-L., R. D. Farley, and H. D. Orville, 1983: Bulk parameterization of the snow field in a cloud model. Journal of Climate and Applied Meteorology, 22, 1065-1092.
Lin, P. L., T-C C. Wang, and C.C. Yeh,1989: Doppler observation study of the rainband observed in TAMEX IOP-13.Meteor. Res.,12,91-119.
Lin, Y. J., T. C. Chen Wang, R. W. Pasken, H. Shen and Z. S. Deng, 1990: Characteristics of a subtropical squall line determined from TAMEX Dual-Doppler data. J. Atmos. Sci., 47, 2382-2399。
Lin, Y. J., R. W . Pasken, and H.W.Chang,1992: The structure of a subtropical prefrontal convective rainband. Part I: Mesoscale kinematic structure determined from Dual-Doppler measurements. Mon. Wea. Rev., 120,1816-1836.
Loehrer, S. M., and R. H. Johnson, 1995: Surface pressure and precipitation life cycle characteristics of PRE-STORM mesoscale convective systems. Mon. Wea. Rev., 123, 600-621.
Lucas, C., E. J. Zipser, and B. S. Ferrier, 2000: Sensitivity of tropical west pacific oceanic squall lines to tropospheric wind and moisture profiles. J.Atmos. Sci, 57, 2351-2373.
Moncrieff, M. W., and M. J. Miller, 1976: The dynamics and simulation of tropical cumu- lonimbus and squall lines. Quart. J. Roy. Meteor. Soc., 102, 373-394.
Montmerle, T., J. P. Lafore, and J. L. Redelsperger, 2000: A tropical squall line observed during TOGA COARE: Extended comparison between simulations and Doppler radar data and the role of midlevel wind shear. Mon. Wea. Rev., 128,3709-3730.
Parker, M. D., and R. H. Johnson, 2000: Organizational modes of midlatitude mesoscale convective systems. Mon. Wea. Rev., 128, 3413-3436.
Parker, M, D., S. A. Rutledge, and R. H. Johnson, 2001: Cloud-to-ground lightning in linear mesoscale convective systems. Mon. Wea. Rev., 129, 1232-1242.
Parker, M. D., 2007: Simulated convective lines with parallel stratiform precipitation. Part I: An archetype for convection in along-line shear. J. Atmos. Sci., 64, 267-288.
Powell, M. D., 1990: Boundary layer structure and dynamics in outer hurricane rainbands. Part I: Mesoscale rainfall and kinematic structure. Mon. Wea. Rev., 118, 891-917.
Rotunno, R., J. B. Klemp , and M. L. Weisman, 1988: A theory for strong, long-lived squall lines. J. Atmos. Sci., 45, 463-485.
Schumacher, R. S., and R. H. Johnson, 2005: Organization and environmental properties of extreme-rain-producing mesoscale convective systems. Mon. Wea. Rev., 133, 961-976.
Seliga, T. A., and V. N. Bringi,1975: Tropical rainfall associated with convective and Stratiform clouds intercomparison of disdrometer and profiler measurements. J. Appl. Meteor.,38, 303~319.
Smull, B. F., and R. A. Houze, Jr., 1985 : A midlatitude squall line with a trailing region of stratiform rain : radar and satellite observations. Mon. Wea. Rev., 113, 117-133.
Smull, B. F., and R. A. Houze, Jr., 1987: Rear inflow in squall lines with trailing stratiform precipitation. Mon. Wea. Rev., 115, 2869-2889.
Smull, B. F., and R. A. Houze, Jr., 1987a : Dual-doppler analysis of a midlatitude squall line with a trailing region of stratiform rain. J. Atmos. Sci., 44, 2128-2148.
Smull, B. F., and R. A. Houze, Jr., 1987b : Rear inflow in squall lines with trailing stratiform precipitation. Mon. Wea. Rev., 115, 2869-2889.
Skamarock, W. C., M. L. Weisman, and J. B. Klemp, 1994: Three-dimensional evolution of simulated long-lived squall lines. J. Atoms. Sci., 51, 2563-2584.
Snook, N., and W. Gallus, 2004: A climatology of severe weather reports as a function of convective system morphology. Preprints, 22d Conf. Severe Local Storms, Hyannis, MA, Amer. Meteor. Soc., CD-ROM, P5.5.
Teng, J.-H., C.-S. Chen, T-C Chen Wang, and Y.-L. Chen, 2000: Orographic effects on a squall line system over Taiwan. Mon. Wea. Rev., 128, 1123-1138.
Trapp, R. J., and M. L. Weisman, 2003: Low-level mesovortices within squall lines and bow echoes. Part II: Their genesis and implications. Mon. Wea. Rev., 131, 2804-2823.
U. S. Depts. Of Commerce and Defense, 1980: Weather radar observations Part A. fedaral meteorological handbook, No. 7, 5-1---5-2. [ Available from National Center for Environmental Prediction, Suitland, MD ]
Wang, C.-C., and G. T. J. Chen, 2002: Case study of the leeside mesolow and mesocyclone in TAMEX. Mon. Wea. Rev., 130, 2572-2592.
Wang, T.-C. C., Y.-J. Lin, R. W. Pasken, and H. Shen, 1990: Characteristics of a subtropical squall line determined from TAMEX dual-Doppler data. Part I: Kinematic structure. J. Atmos. Sci.,47, 2357–2381.
Weisman, M. L., and J. B. Klemp, 1982: The dependence of numerically simulated convective storms on vertical wind shear and buoyancy. Mon. Wea. Rev., 110, 504-520.
Weisman M. L., J. B. Klemp, and R. Rotunno,1988 : The structure and evolution of numerically simulated squall lines. J. Atmos. Sci., 45, 1990-2013。
Weisman, M. L., and C. A. Davis, 1998: Mechanisms for the generation of mesoscale vortices within quasi-linear convective systems. J. Atmos. Sci., 55, 2603-2622.
Weisman, M. L., and R. J. Trapp, 2003: Low-level mesovortices within squall lines and bow echoes. Part I: Overview and dependence on environmental shear. Mon. Wea. Rev., 131, 2779-2803.
Zipser, E. J., 1969: The role of organized unsaturated downdrafts in the structure and rapid decay of an equatorial disturbance. J. Atoms. Sci., 8, 799-814.
Zipser, E. J., 1977: Mesoscale and convective-scale downdrafts as distinct components of squall line structure. Mon. Wea. Rev., 105, 1568-1589.