簡易檢索 / 詳目顯示

研究生: 林偉文
論文名稱: 雙颱環境下台灣海峽中尺度線狀對流之個案研究
指導教授: 簡芳菁
學位類別: 碩士
Master
系所名稱: 地球科學系
Department of Earth Sciences
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 87
中文關鍵詞: 中尺度線狀對流颱風中尺度高壓鞍形場
論文種類: 學術論文
相關次數: 點閱:96下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 2006年8月9日桑美、寶發颱風之環流輻合區位於台灣上空,東吉島南方出現橫跨台灣海峽且生命期長達18小時的中尺度強線狀對流(Mesoscale Convective Line,以下簡稱MCL)。根據雷達觀測可將其生命期之0~5 h定義為「發展期」,為寶發留下之微弱雨帶在原地發展;第5~8 h定義為「成熟滯留期」,特徵為大於50 dBZ之回波近似滯留,且其西側向西南方彎曲,內部的對流胞由東側發展向西側傳送。第8-15 h為「成熟移動期」,此期MCL往北移動約80 km,且回波之中段垂直結構隨高度向南傾斜,強度仍維持在50 dBZ以上。第15-18 h為「消散期」,在MCL南北兩側出現張裂分離且回波迅速減弱。
    WRF模擬顯示,在MCL生成之前,雙颱之外圍環流越過中央山脈後,因絕熱增溫作用,於背風側產生南北兩個中尺度低壓。同時,桑美外圍風場在台灣海峽北部受到地形管道效應影響,低層產生東北風噴流,而寶發外圍氣流在中央山脈南部附近出現繞山作用,在高屏近海產生低層東南風噴流,兩者造成風速風切,導致台灣西部近海處北側、南側分別生成一個氣旋式、反氣旋式渦漩,且與兩中尺度低壓疊合,使台灣海峽呈現鞍形氣流場分佈。模擬顯示MCL對流胞激發位置是兩渦漩之南北風輻合處,且較強的偏北風遇到較冷偏南風被迫抬起產生上衝流。此外,兩颱風為MCL持續提供一南一北對流不穩定與高可用位能之環境。成熟移動期因北風向中層延伸,隨高度向南傾斜之MCL的南側低層出現伴隨冷池的中尺度高壓,此與MCL往北移動有密切相關,亦使MCL由PS型轉為TS型。當動力、熱力作用明顯減弱時,MCL進入消散期。

    摘要 I 目錄 II 圖表說明 III 第一章 前言 1 第二章 綜觀環境 10 第三章 七股雷達與地面觀測分析 13 3.1 發展期至成熟滯留期 13 3.2 成熟移動期 16 3.3 消散期 17 3.4 小結 18 第四章 模擬結果與分析 21 4.1 WRF模擬設定 21 4.2 線狀對流發展前之環境 22 4.3 成熟滯留期 24 4.4 成熟移動期 30 4.5 消散期 33 第五章 綜合討論 36 5.1 熱力條件 36 5.2 動力條件 37 第六章 結論 39 參考文獻 45 圖表 51

    朱佩君、鄭永光、王洪慶、陶祖鈺, 2005: 颱風螺旋雨帶的數值模擬研究。科學通報, 50-5, 486-494。
    林李耀、郭鴻基,1999: 颮線基本結構的數值模擬研究。大氣科學,27-4,319-339。
    林李耀、郭鴻基,2000: 不同水氣垂直結構的颮線模擬測試。大氣科學,28-2,143-160。
    陳泰然、周鴻祺、林宗嵩、楊進賢, 1996: 台灣海峽北部與鄰近地區春夏中尺度對流系統之氣候特徵。大氣科學, 24-3, 145-168。
    陳泰然、沈里音,1996: 台灣梅雨季海峽北部與鄰近地區線狀對流之環境條件。大氣科學,24,233-245。
    陳泰然、王重傑、周鴻祺、楊進賢, 2002: TAMEX IOP-2 颮線之結構特徵研究。大氣科學,30-4,351-375。
    陳泰然、王重傑、周鴻祺, 2003: TAMEX IOP-13 颮線個案特徵之觀測研究。大氣科學, 31-2, 131-156。
    葉青青,1990 : TAMEX IOP # 13 長生命期雨帶的降水結構分析。國立中央大學碩士論文,121pp.
    黃維平,2002: 二維非靜力模式對颮線之數值模擬。國立臺灣大學大氣科學研究所碩士論文,87pp.。
    潘大綱、顏自雄、蔡晉東、任亦偉,2004: 台灣地區春季颮線個案分析。第八屆大氣科學學術研討會。
    鄧仁星、陳景森,1990: 台灣地區颮線系統之環境分析。大氣科學,18,149-158。
    魏志憲、何台華、張茂興、李文兆, 2006: 梅雨季台灣南部近海準線狀對流系統的特性分析。 大氣科學, 34-2, 157-175。
    簡芳菁與林勝峰,2004:冬季冷鋒個案之數值研究。大氣科學,32,141-160。
    AMS, 2000:Glossary of meteorology, second edition. American Meteorologial Society.
    Barnes, G. M., E. J. Zipser, D.Jorgensen , and F.Marks, Jr., 1983: Mesoscale and convective structure of a hurricane rainband. J.Atmos. Sci., 40, 2125-2173.
    Barnes, G. M., and K. Sieckman, 1984: The environment of fast- and slow-moving tropical mesoscale convective cloud lines. Mon. Wea. Rev., 112, 1782-1794.
    Barnes, G. M. , and G. J. Stossmeister, 1986: The structure and decay of a rainband in hurricane Irene (1981). Mon. Wea. Rev., 114, 2590-2601.
    Barnes, G. M., J. F.Gamache, M. A. Lemone , and G. J. Stossmeister, 1991: A convective cell in a Hurricane rainband. Mon. Wea. Rev.,119,776-793.
    Biggerstaff, M. I., and R. A. Houze Jr., 1991: Kinematic and precipitation structure of the 10–11 June 1985 squall line. Mon. Wea. Rev., 119, 3034-3065.
    Bluestein, H. B., and M. H. Jain, 1985: Formation of mesoscale lines of precipitation : severe squall lines in Oklahoma during the spring. J.Atmos. Sci., 42, 1711-1732.
    Chen, G. T.-J., and C.-C. Yu,1988: Study of low-level jet and extremely heavy rainfall over northern Taiwan in the Mei-Yu season. J.Atmos. Sci., 116, 884~891.
    Chien, F.-C., and Y.-H. Kuo, 2006: Topographic effects on a wintertime cold Front in Taiwan, Mon. Wea. Rev., 134, 3297-3316.
    Chong, M., P. Amayenc, G. Scialom and J. Testud, 1987 : A tropical squall line observed during the COPT 81 experiment in West Africa. PartⅠ:kinematic structure inferred from dual-Doppler radar data. Mon. Wea. Rev., 115, 670-694.
    Churchill, D. D., and R. A. Houze, Jr., 1991: Effects of radiation and turbulence on the diabatic heating and water budget of the stratiform region of a tropical cloud cluster. J. Atmos. Sci. , 48, 903-922.
    Eastin, M. D., and M. C. Link, 2009: Miniature supercells in an offshore outer rainband of hurricane Ivan (2004). Mon. Wea. Rev., 137, 2081-2104.
    Fernandez, W., 1982: A review of downdrafts at the rear of tropical squall lines. Bulletin A.M.S., 63-11, 1285-1293.
    Fovell, R. G., and Y. Ogura, 1988: Numerical simulation of a midlatitude squall line in two dimensions. J. Atoms. Sci., 45, 3846-3879.
    Frank, W. M., 1978: The Life Cycles of GATE Convective Systems. J. Atoms. Sci., 35, 1256-1264.
    Fujita, T.,1979: Objective, operation, and results of Project NIMROD. Preprints, 11 th Conf. onSevere Local Storms, Kansas City, MO, Amer. Meteor. Soc., 259-266.
    Gamache, J. F., and R. A. Houze, Jr., 1982 : Mesoscale air motions associated with a tropical squall line. Mon. Wea. Rev., 110, 118-135.
    Chen, G. T. J., and H. C. Chou, 1993: General characteristics of squall lines observed in TAMEX. Mon. Wea. Rev., 121, 726-733.
    Heymsfield, G. M., and S. Schotz, 1985: Structure and evolution of a severe Squall line over Oklahoma. Mon. Wea. Rev., 113, 1563-1589.
    Houze, R. A., 1977 : Structure and dynamics of a tropical squall-line system. Mon. Wea. Rev., 105, 1540-1567.
    Houze, R. A., Jr., 1993: Mesoscale convective system. Cloud Dynamics. Academic Press, Inc., 334-404.
    Houze, R. A., Jr., and J. Cetrone, S. R. Brodzik, S. S. Chen, W. Zhao, W. C. Lee, J. A. Moore, G. J. Stossmeister, M. M. Bell, R. F. Rogers, 2006: The hurricane rainband and intensity change experiment: Observations and modeling of hurricanes Katrina, Ophelia, and Rita. Bulletin of the American Meteorological Society, 87, 1503-1521.
    Janjić, Z. I., 1994: The step-mountain Eta coordinate model: Further developments of the convection, viscous sublayer, and turbulence closure schemes. Mon. Wea. Rev., 122, 927-945.
    Janjić, Z. I., 2000: Comments on “Development and evaluation of a convection scheme for use in climate models”, J. Atoms. Sci., 57, 3686-3686.
    Johnson, H. J., and M. E. Nichools, 1983 : A composite analysis of the boundary layer accompanying a tropical squall line. Mon. Wea. Rev., 111, 308-319.
    Johnson, R. H., S. L. Aves, P. E. Ciesielski, and T. D. Keenan, 2005: Organization of oceanic convection during the onset of the 1998 East Asian summer monsoon. Mon. Wea. Rev., 133, 131-148.
    Jorgensen, D. P., M. A. LeMone, and S. B. Trier, 1997: Structure and evolution of the 22 February 1993 TOGA COARE squall line: Aircraft observations of precipitation, circulation, and surface energy fluxes. J. Atmos. Sci. , 54, 1961-1985.
    Jou, J.-D. B., and S.-M. Deng, 1991: Structure of a low-level jet and its roul in triggering and organizing moist convection over Taiwan: A TAMEX study. Terre. Atmos. Ocea.,3, 39-58.
    LeMone, M. A., E. J. Zipser, and S. B. Trier, 1998: The role of environmental shear and thermodynamic conditions in determining the structure and evolution of mesoscale convective systems during TOGA COARE. J. Atmos. Sci., 55, 3493-3518.
    Lilly, D. K., 1979: The dynamical structure and evolution of thunderstorms and squall lines. Ann. Rev. Earth Planet. Sci., 7, 117-171.
    Lin, Y.-L., R. D. Farley, and H. D. Orville, 1983: Bulk parameterization of the snow field in a cloud model. Journal of Climate and Applied Meteorology, 22, 1065-1092.
    Lin, P. L., T-C C. Wang, and C.C. Yeh,1989: Doppler observation study of the rainband observed in TAMEX IOP-13.Meteor. Res.,12,91-119.
    Lin, Y. J., T. C. Chen Wang, R. W. Pasken, H. Shen and Z. S. Deng, 1990: Characteristics of a subtropical squall line determined from TAMEX Dual-Doppler data. J. Atmos. Sci., 47, 2382-2399。
    Lin, Y. J., R. W . Pasken, and H.W.Chang,1992: The structure of a subtropical prefrontal convective rainband. Part I: Mesoscale kinematic structure determined from Dual-Doppler measurements. Mon. Wea. Rev., 120,1816-1836.
    Loehrer, S. M., and R. H. Johnson, 1995: Surface pressure and precipitation life cycle characteristics of PRE-STORM mesoscale convective systems. Mon. Wea. Rev., 123, 600-621.
    Lucas, C., E. J. Zipser, and B. S. Ferrier, 2000: Sensitivity of tropical west pacific oceanic squall lines to tropospheric wind and moisture profiles. J.Atmos. Sci, 57, 2351-2373.
    Moncrieff, M. W., and M. J. Miller, 1976: The dynamics and simulation of tropical cumu- lonimbus and squall lines. Quart. J. Roy. Meteor. Soc., 102, 373-394.
    Montmerle, T., J. P. Lafore, and J. L. Redelsperger, 2000: A tropical squall line observed during TOGA COARE: Extended comparison between simulations and Doppler radar data and the role of midlevel wind shear. Mon. Wea. Rev., 128,3709-3730.
    Parker, M. D., and R. H. Johnson, 2000: Organizational modes of midlatitude mesoscale convective systems. Mon. Wea. Rev., 128, 3413-3436.
    Parker, M, D., S. A. Rutledge, and R. H. Johnson, 2001: Cloud-to-ground lightning in linear mesoscale convective systems. Mon. Wea. Rev., 129, 1232-1242.
    Parker, M. D., 2007: Simulated convective lines with parallel stratiform precipitation. Part I: An archetype for convection in along-line shear. J. Atmos. Sci., 64, 267-288.
    Powell, M. D., 1990: Boundary layer structure and dynamics in outer hurricane rainbands. Part I: Mesoscale rainfall and kinematic structure. Mon. Wea. Rev., 118, 891-917.
    Rotunno, R., J. B. Klemp , and M. L. Weisman, 1988: A theory for strong, long-lived squall lines. J. Atmos. Sci., 45, 463-485.
    Schumacher, R. S., and R. H. Johnson, 2005: Organization and environmental properties of extreme-rain-producing mesoscale convective systems. Mon. Wea. Rev., 133, 961-976.
    Seliga, T. A., and V. N. Bringi,1975: Tropical rainfall associated with convective and Stratiform clouds intercomparison of disdrometer and profiler measurements. J. Appl. Meteor.,38, 303~319.
    Smull, B. F., and R. A. Houze, Jr., 1985 : A midlatitude squall line with a trailing region of stratiform rain : radar and satellite observations. Mon. Wea. Rev., 113, 117-133.
    Smull, B. F., and R. A. Houze, Jr., 1987: Rear inflow in squall lines with trailing stratiform precipitation. Mon. Wea. Rev., 115, 2869-2889.
    Smull, B. F., and R. A. Houze, Jr., 1987a : Dual-doppler analysis of a midlatitude squall line with a trailing region of stratiform rain. J. Atmos. Sci., 44, 2128-2148.
    Smull, B. F., and R. A. Houze, Jr., 1987b : Rear inflow in squall lines with trailing stratiform precipitation. Mon. Wea. Rev., 115, 2869-2889.
    Skamarock, W. C., M. L. Weisman, and J. B. Klemp, 1994: Three-dimensional evolution of simulated long-lived squall lines. J. Atoms. Sci., 51, 2563-2584.
    Snook, N., and W. Gallus, 2004: A climatology of severe weather reports as a function of convective system morphology. Preprints, 22d Conf. Severe Local Storms, Hyannis, MA, Amer. Meteor. Soc., CD-ROM, P5.5.
    Teng, J.-H., C.-S. Chen, T-C Chen Wang, and Y.-L. Chen, 2000: Orographic effects on a squall line system over Taiwan. Mon. Wea. Rev., 128, 1123-1138.
    Trapp, R. J., and M. L. Weisman, 2003: Low-level mesovortices within squall lines and bow echoes. Part II: Their genesis and implications. Mon. Wea. Rev., 131, 2804-2823.
    U. S. Depts. Of Commerce and Defense, 1980: Weather radar observations Part A. fedaral meteorological handbook, No. 7, 5-1---5-2. [ Available from National Center for Environmental Prediction, Suitland, MD ]
    Wang, C.-C., and G. T. J. Chen, 2002: Case study of the leeside mesolow and mesocyclone in TAMEX. Mon. Wea. Rev., 130, 2572-2592.
    Wang, T.-C. C., Y.-J. Lin, R. W. Pasken, and H. Shen, 1990: Characteristics of a subtropical squall line determined from TAMEX dual-Doppler data. Part I: Kinematic structure. J. Atmos. Sci.,47, 2357–2381.
    Weisman, M. L., and J. B. Klemp, 1982: The dependence of numerically simulated convective storms on vertical wind shear and buoyancy. Mon. Wea. Rev., 110, 504-520.
    Weisman M. L., J. B. Klemp, and R. Rotunno,1988 : The structure and evolution of numerically simulated squall lines. J. Atmos. Sci., 45, 1990-2013。
    Weisman, M. L., and C. A. Davis, 1998: Mechanisms for the generation of mesoscale vortices within quasi-linear convective systems. J. Atmos. Sci., 55, 2603-2622.
    Weisman, M. L., and R. J. Trapp, 2003: Low-level mesovortices within squall lines and bow echoes. Part I: Overview and dependence on environmental shear. Mon. Wea. Rev., 131, 2779-2803.
    Zipser, E. J., 1969: The role of organized unsaturated downdrafts in the structure and rapid decay of an equatorial disturbance. J. Atoms. Sci., 8, 799-814.
    Zipser, E. J., 1977: Mesoscale and convective-scale downdrafts as distinct components of squall line structure. Mon. Wea. Rev., 105, 1568-1589.

    下載圖示
    QR CODE