研究生: |
劉宏文 |
---|---|
論文名稱: |
動態恢復對短期跑步訓練後體內免疫細胞及其亞群數目的影響 Effects of active recovery on immune cells and subpopulations following a short-term running training |
指導教授: | 徐孟達 |
學位類別: |
碩士 Master |
系所名稱: |
體育學系 Department of Physical Education |
論文出版年: | 2006 |
畢業學年度: | 94 |
語文別: | 中文 |
論文頁數: | 41 |
中文關鍵詞: | 動態恢復 、白血球 、T淋巴細胞亞群 |
英文關鍵詞: | active recovery, leukocyte, T lymphocyte subpopulations |
論文種類: | 學術論文 |
相關次數: | 點閱:304 下載:67 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
選手進行激烈訓練是為了追求更卓越的運動表現,但上呼吸道感染的機率可能伴隨著激烈的訓練而提高,進而影響訓練的成果及個人的健康。已知動態恢復能緩和單次激烈運動後免疫抑制的現象,但對於短期連續的激烈運動之影響仍是未知,因此本研究針對短期跑步訓練後,白血球及其亞群數目變化進行探討。
本實驗對象為20位高中田徑隊男性選手,依照最大攝氧量進行配對,分為動態恢復組(平均年齡:16.17±1.13歲,最大攝氧量:57.25±8.71 ml/min-1‧kg-1)和安靜休息組(平均年齡:16.63±1.03歲,最大攝氧量:58.52±9.00 ml/min-1‧kg-1),兩組均進行連續七天的漸增衰竭運動,動態恢復組在每天衰竭運動後,再接著20分鐘低強度 (35﹪VO2max) 運動,而安靜休息組則採坐姿休息。並於第1、第4及第7天運動前、運動後立即、運動後20分鐘及運動後2小時進行採血,以便分析白血球、嗜中性球及淋巴細胞數目和T淋巴亞群、B細胞及NK細胞比例。所得資料以混合設計二因子變異數和重複量數單因子變異數進行分析。結果發現:除第一天運動後2小時及第7天運動前,動態恢復組CD3+CD4+亞群的比例顯著低於靜態恢復組,其餘採血點兩組白血球、嗜中性球和淋巴細胞數目及T淋巴細胞亞群、B細胞和NK細胞比例均無顯著差異。動態恢復介入對於連續衰竭運動後恢復期免疫細胞變化的趨勢與靜態恢復組相當,但可觀察到動態介入能緩和連續衰竭運動後恢復期淋巴細胞減少的趨勢。因此本研究顯示35﹪VO2max動態恢復,在運動後2小時內採血點與靜態恢復比較,對於舒緩免疫抑制的現象,並無顯著的效應。
Athletes were undertaken intensive training to pursue better performance, but higher incidence of upper respiratory tract infection may be accompanied by strenuous exercise, and it will influence on training effort and personal health. It has been shown that active recovery can attenuate immunosuppression following a single bout of heavy exercise, but the effect of continuous training was still unkown. Hence, the present study was focused on calrifying the effects of active recovery on immune cells and subsets following a short-term running training.
Twenty senior high school male athletes participated in this study. They were divided in two groups according to VO2max values : active recovery, AR (age=16.17±1.13years, VO2max values=57.25±8.71 ml/min-1‧kg-1 ) rest recovery, RR (age=16.63±1.03 years, VO2max values=58.52±9.00 ml/min-1‧kg-1). Both groups performed incremental exercise until volitional exhaustion on the treadmill and each subjects exercised 7 days continuously. After exhaustive exercise AR jogged lasting 20 minutes at 35﹪VO2max, and RR rested 20 minutes on the chair everyday. Blood samples were collected at rest before exercise, immediately exhaustive exercise, and 20, 120 min after exercise on the 1st, 4th and 7th day. Leukocyte count , neutrophil count, lymphocyte count and propotion of T lymphocyte subsets, B cell and NK cell were measured. Data were analyzed using mixed design two-way ANOVA and repeated one-way ANOVA. Results: there were no significant difference in leukocyte count, neutrophil count, lymphocyte count and lymphocyte subsets percentages between both groups excepting the ratio of CD3+CD4+ at 120min after exercise on the 1st day. Conclusion: active recovery attenuated the reducing trend of lymphocytes numbers, besides it could sustain baseline values of lymphocyte. Active recovery had no influence on the ratio of lymphocyte subpopulations during recovery.
王政光、林玄原、洪小芳、楊舒如、張弘志、張瑞宏等(譯)(2004)。免疫學。台北市:九州圖書。(Goldby R. A., Kindt T. J., Osborne B. A. & Kuby J., 2003)
王聖予、陳建和(譯)(2002)。免疫學。台北市:藝軒。 (Roitt I., Brostoff J. & Male D., 1998)
林正常 (1996) 。運動生理實驗指引。台北:師大書苑。
高曉明 (2004) 。醫學免疫學基礎。台北市:合記圖書出版社。
曾哲明 (2005) 。免疫學。台北:新文京出版社。
謝文欽(譯)(2004)。細胞與分子免疫學。台北市:和記圖書出版社。(Abul K.A.& Andrew H. L., 2003 )
Benschop R. J, Rodriguez-Feuerhahn M., & Schedlowski M. (1996). Catecholamine-induced leukocytosis: early observations, current research, and future directions. Brain, behavior, and immunity, 10(2), 77-91.
Bond V., Adams R. G., Tearney R. J., Gresham K., & Ruff W. (1991). Effects of active and passive recovery on lactate removal and subsequent isokinetic muscle function. The Journal of sports medicine and physical fitness, 31(3), 357-361.
Buyukyazi G. (2004). Differences in the cellular and humoral immune system between sedentary and endurance-trained elderly males. Science & Sports, 19 (3), 130-135.
Dodd S., Powers S. K., Callender T., & Brooks E. (1984). Blood lactate disappearance at various intensities of recovery exercise. Journal of applied physiology, 57(5), 1462-1465.
Fry R. W., Morton A.R., Crawford G. P., & Keast D. (1992). Cell numbers and in vitro responses of leucocytes and lymphocyte subpopulations following maximal exercise and interval training sessions of different intensities. European journal of applied physiology and occupational physiology, 64(3), 218-227.
Ibfelt T., Petersen E. W., Bruunsgaard H., Sandmand M., & Pedersen B. K. (2002). Exercise-induced change in type 1 cytokine-producing CD8+ T cells is related to a decrease in memory T cells. Journal of applied physiology, 93(2), 645-648.
Imrich R., Tibenska E., Koska J., Ksinantova L., Kvetnansky R., Bergendiova-Sedlackova K., et al. (2004). Repeated stress-induced stimulation of catecholamine response is not followed by altered immune cell redistribution. Annals of the New York Academy of Sciences, 1018, 266-272.
Iversen P. O., Stokland A., Rolstad B., & Benestad H. B. (1994). Adrenaline-induced leucocytosis: recruitment of blood cells from rat spleen, bone marrow and lymphatics. European journal of applied physiology and occupational physiology, 68(3), 219-227.
Kurokawa Y., Shinkai S., Torii J., Hino S., & Shek P. N. (1995). Exercise-induced changes in the expression of surface adhesion molecules on circulating granulocytes and lymphocytes subpopulations. European journal of applied physiology and occupational physiology, 71, 245-252.
Lancaster G. I., Khan Q., Drysdale P. T., Wallace F., Jeukendrup A. E., Drayson M. T., & Gleeson M. (2005). Effect of prolonged exercise and carbohydrate ingestion on type 1 and type 2 T lymphocyte distribution and intracellular cytokine production in humans. Journal of Applied Physiology, 98(2), 565-571.
Lehmann M., Keul J., & Korsten-Reck U. (1981). The influence of graduated treadmill exercise on plasma catecholamines, aerobic and anaerobic capacity in boys and adults. European journal of applied physiology and occupational physiology, 47(3), 301-311.
Maisel A. S., Harris T., Rearden C. A., & Michel M. C. (1990). Beta-adrenergic receptors in lymphocyte subsets after exercise. Alterations in normal individuals and patients with congestive heart failure. Circulation, 82(6), 2003-2010.
Mazzeo R. S., Rajkumar C., Rolland J., Blaher B., Jennings G., & Esler M. (1998). Immune response to a single bout of exercise in young and elderly subjects. Mechanisms of Ageing & Development, 100(2), 121-132.
Mooren F. C., Lechtermann A., Fromme A., Thorwesten L., & Volker K. (2001). Alterations in intracellular calcium signaling of lymphocytes after exhaustive exercise. Medicine & Science in Sports & Exercise, 33(2), 242-248.
Nagao F., Suzui M., Takeda K., Yagita H., & Okumura K. (2000). Mobilization of NK cells by exercise: downmodulation of adhesion molecules on NK cells by catecholamines. American journal of physiology. Regulatory, integrative and comparative physiology, 279(4), R1251-1256.
Natale V. M., Brenner I. K., Moldoveanu A. I., Vasiliou P., Shek P., & Shephard R. J. (2003). Effects of three different types of exercise on blood leukocyte count during and following exercise. Sao Paulo Medical Journal, 121(1), 9-14.
Nieman D. C. (1994). Exercise, upper respiratory tract infection, and the immune system. Medicine & Science in Sports & Exercise, 26(2), 128-139.
Nieman D. C. (2000). Special feature for the Olympics: effects of exercise on the immune system. Immunology & Cell Biology, 78(5), 496-501.
Nieman D. C., Henson D. A., Austin M. D., & Brown V. A. (2005). Immune response to a 30-minute walk. Medicine & Science in Sports & Exercise,37 (1), 57-62.
Pedersen B. K., & Hoffman-Goetz L. (2000). Exercise and the immune system: regulation, integration, and adaptation. Physiological reviews, 80(3), 1055-1081.
Ronsen O., Pedersen B. K., Oritsland T. R., Bahr R., & Kjeldsen-Kragh J. (2001). Leukocyte counts and lymphocyte responsiveness associated with repeated bouts of strenuous endurance exercise. Journal of Applied Physiology, 91(1), 425-434.
Shephard R. J. (2003). Adhesion molecules, catecholamines and leucocyte redistribution during and following exercise. Sports medicine, 33(4), 261-284.
Steensberg A., Toft A. D., Bruunsgaard H., Sandmand M., Halkjaer-Kristensen J., & Pedersen B. K. (2001). Strenuous exercise decreases the percentage of type 1 T cells in the circulation. Journal of Applied physiology, 91(4), 1708-1712.
van Eeden S. F., Kitagawa Y., Klut M. E., Lawrence E., & Hogg J. C. (1997). Polymorphonuclear leukocytes released from the bone marrow preferentially sequester in lung microvessels. Microcirculation, 4(3), 369-380.
Vider J., Lehtmaa J., Kullisaar T., Vihalemm T., Zilmer K., Kairane C., et al. (2001). Acute immune response in respect to exercise-induced oxidative stress. Pathophysiology, 7(4), 263-270.
Wigernaes I., Hostmark A. T., Kierulf P., & Stromme S. B. (2000). Active recovery reduces the decrease in circulating white blood cells after exercise. International journal of sports medicine, 21(8), 608-612.
Wigernaes I., Hostmark A. T., Stromme S. B., Kierulf P., & Birkeland K. (2001).Active recovery and post-exercise white blood cell count, free fatty acids, and hormones in endurance athletes. European journal of applied physiology, 84(4), 358-366.