研究生: |
楊采蓁 |
---|---|
論文名稱: |
1.鑑定以細胞自噬清除神經母細胞瘤堆積多麩醯胺的小分子化合物 2. 鑑定具有清除肝癌類幹細胞潛力的藥物 |
指導教授: | 方剛 |
學位類別: |
碩士 Master |
系所名稱: |
生命科學系 Department of Life Science |
論文出版年: | 2014 |
畢業學年度: | 102 |
語文別: | 中文 |
論文頁數: | 78 |
中文關鍵詞: | 細胞自噬 、神經退化性疾病 、多麩醯胺酸疾病 、肝癌類幹細胞 、鴉膽子 、夏枯草 、teroxirone 、苦蔘 |
論文種類: | 學術論文 |
相關次數: | 點閱:314 下載:1 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
1.多麩醯胺酸疾病多屬於神經退化性疾病,主要原因是因為核苷酸CAG異常重複,讓蛋白質錯誤折疊造成聚集所引起細胞毒性,進一步造成細胞死亡。目前已有報導指出,自噬系統可以透過溶酶體降解突變蛋白、胞器並減輕polyQ聚集所引發的細胞毒性,因此促進細胞自噬也許對於神經退化性疾病的治療能提供一個有效的方向。本研究轉殖不同長度polyQ結合綠色螢光蛋白的基因進入人類神經瘤母細胞建立穩定細胞株作為篩選平台,實驗首先利用螢光染色標定細胞自噬相關標記,篩選出能誘導細胞自噬並且不會影響細胞的存活的化合物。再透過螢光顯微鏡觀察藥物是否可以加強清除蛋白堆積物。此外在西方轉漬法,確定藥物能增加細胞自噬的相關標記蛋白。最後利用自噬抑制劑抑制細胞自噬進而降低清除polyQ聚集蛋白的能力,以證明藥物是透過促進自噬方式清除毒性蛋白堆積物。本研究所篩選的藥物,可作為治療神經退化性疾病的潛力藥物的發展,未來將更進一步確認細胞自噬如何清除細胞polyQ 堆積的相關機制。
2.肝癌是全球排名第三與癌症死亡有關的疾病,雖然手術切除可以提高存活率,但是在術後常發現還是有癌細胞轉移及擴散的現象。癌症幹細胞具有自我更新以及分化能力,認為是造成癌症轉移、復發,對於化療、放射性療法產生抗藥性的主要原因,由於腫瘤細胞亞群可以抵抗藥物毒性導致在癌症病患體內要徹底清除癌細胞是一大挑戰。本論文使用肝細胞株Huh7 (mutant p53),HepG2 (wild Type p53)和Hep3B (p53 null)分別處理teroxirone以及各種中藥,觀察細胞型態。實驗首先要培養肝癌類幹細胞,將肝癌細胞培養在不含血清但含有特定生長因子的培養基(DMEM/F12)裡面含鹼性成纖維細胞生長因子(basic fibroblast growth factor; bFGF),表皮生長因子(epidermal growth factor; EGF)以及B27,培養7天後,將培養出tumor sphere,實驗以不同濃度的teroxirone以及中藥處理進一步利用顯微鏡觀察spheroid的生成和大小,並鑑定相關蛋白質變化。目前本研究發現這些藥物會有不同程度降低tumor sphere的體積及數目,會進一步會利用癌症標誌物分離肝癌spheroid的細胞,未來將具有癌症幹細胞特徵的細胞使用萃取緩衝液萃取出蛋白,再利用西方點墨法觀察幹細胞相關標誌物以及可能的細胞凋亡機制,期望本研究可以利用不同藥物以降低肝癌類幹細胞生長以及有效抑制腫瘤的增生。
第一部分
1. Orr, H. T., and Zoghbi, H. Y. (2007) Trinucleotide repeat disorders. Annual review of neuroscience 30, 575-621
2. Huang, C. C., Faber, P. W., Persichetti, F., Mittal, V., Vonsattel, J. P., MacDonald, M. E., and Gusella, J. F. (1998) Amyloid formation by mutant huntingtin: threshold, progressivity and recruitment of normal polyglutamine proteins. Somatic cell and molecular genetics 24, 217-233
3. Semaka, A., Creighton, S., Warby, S., and Hayden, M. R. (2006) Predictive testing for Huntington disease: interpretation and significance of intermediate alleles. Clinical genetics 70, 283-294
4. Langbehn, D. R., Hayden, M. R., and Paulsen, J. S. (2010) CAG-repeat length and the age of onset in Huntington disease (HD): a review and validation study of statistical approaches. American journal of medical genetics. Part B, Neuropsychiatric genetics : the official publication of the International Society of Psychiatric Genetics 153b, 397-408
5. DiFiglia, M., Sapp, E., Chase, K. O., Davies, S. W., Bates, G. P., Vonsattel, J. P., and Aronin, N. (1997) Aggregation of huntingtin in neuronal intranuclear inclusions and dystrophic neurites in brain. Science (New York, N.Y.) 277, 1990-1993
6. Wellington, C. L., Brinkman, R. R., O'Kusky, J. R., and Hayden, M. R. (1997) Toward understanding the molecular pathology of Huntington's disease. Brain pathology (Zurich, Switzerland) 7, 979-1002
7. Scherzinger, E., Lurz, R., Turmaine, M., Mangiarini, L., Hollenbach, B., Hasenbank, R., Bates, G. P., Davies, S. W., Lehrach, H., and Wanker, E. E. (1997) Huntingtin-encoded polyglutamine expansions form amyloid-like protein aggregates in vitro and in vivo. Cell 90, 549-558
8. Shao, J., and Diamond, M. I. (2007) Polyglutamine diseases: emerging concepts in pathogenesis and therapy. Human molecular genetics 16 Spec No. 2, R115-123
9. Cortes, C. J., and La Spada, A. R. (2014) The many faces of autophagy dysfunction in Huntington's disease: from mechanism to therapy. Drug discovery today
10. Imai, Y., Soda, M., Murakami, T., Shoji, M., Abe, K., and Takahashi, R. (2003) A product of the human gene adjacent to parkin is a component of Lewy bodies and suppresses Pael receptor-induced cell death. The Journal of biological chemistry 278, 51901-51910
11. Mattson, M. P., LaFerla, F. M., Chan, S. L., Leissring, M. A., Shepel, P. N., and Geiger, J. D. (2000) Calcium signaling in the ER: its role in neuronal plasticity and neurodegenerative disorders. Trends in neurosciences 23, 222-229
12. Ryu, E. J., Harding, H. P., Angelastro, J. M., Vitolo, O. V., Ron, D., and Greene, L. A. (2002) Endoplasmic reticulum stress and the unfolded protein response in cellular models of Parkinson's disease. The Journal of neuroscience : the official journal of the Society for Neuroscience 22, 10690-10698
13. Emili, A., Greenblatt, J., and Ingles, C. J. (1994) Species-specific interaction of the glutamine-rich activation domains of Sp1 with the TATA box-binding protein. Molecular and cellular biology 14, 1582-1593
14. Dunah, A. W., Jeong, H., Griffin, A., Kim, Y. M., Standaert, D. G., Hersch, S. M., Mouradian, M. M., Young, A. B., Tanese, N., and Krainc, D. (2002) Sp1 and TAFII130 transcriptional activity disrupted in early Huntington's disease. Science (New York, N.Y.) 296, 2238-2243
15. Chen-Plotkin, A. S., Sadri-Vakili, G., Yohrling, G. J., Braveman, M. W., Benn, C. L., Glajch, K. E., DiRocco, D. P., Farrell, L. A., Krainc, D., Gines, S., MacDonald, M. E., and Cha, J. H. (2006) Decreased association of the transcription factor Sp1 with genes downregulated in Huntington's disease. Neurobiology of disease 22, 233-241
16. Nucifora, F. C., Jr., Sasaki, M., Peters, M. F., Huang, H., Cooper, J. K., Yamada, M., Takahashi, H., Tsuji, S., Troncoso, J., Dawson, V. L., Dawson, T. M., and Ross, C. A. (2001) Interference by huntingtin and atrophin-1 with cbp-mediated transcription leading to cellular toxicity. Science (New York, N.Y.) 291, 2423-2428
17. Sugars, K. L., Brown, R., Cook, L. J., Swartz, J., and Rubinsztein, D. C. (2004) Decreased cAMP response element-mediated transcription: an early event in exon 1 and full-length cell models of Huntington's disease that contributes to polyglutamine pathogenesis. The Journal of biological chemistry 279, 4988-4999
18. Cui, L., Jeong, H., Borovecki, F., Parkhurst, C. N., Tanese, N., and Krainc, D. (2006) Transcriptional repression of PGC-1alpha by mutant huntingtin leads to mitochondrial dysfunction and neurodegeneration. Cell 127, 59-69
19. McConoughey, S. J., Basso, M., Niatsetskaya, Z. V., Sleiman, S. F., Smirnova, N. A., Langley, B. C., Mahishi, L., Cooper, A. J., Antonyak, M. A., Cerione, R. A., Li, B., Starkov, A., Chaturvedi, R. K., Beal, M. F., Coppola, G., Geschwind, D. H., Ryu, H., Xia, L., Iismaa, S. E., Pallos, J., Pasternack, R., Hils, M., Fan, J., Raymond, L. A., Marsh, J. L., Thompson, L. M., and Ratan, R. R. (2010) Inhibition of transglutaminase 2 mitigates transcriptional dysregulation in models of Huntington disease. EMBO molecular medicine 2, 349-370
20. Lee, J., Kim, C. H., Simon, D. K., Aminova, L. R., Andreyev, A. Y., Kushnareva, Y. E., Murphy, A. N., Lonze, B. E., Kim, K. S., Ginty, D. D., Ferrante, R. J., Ryu, H., and Ratan, R. R. (2005) Mitochondrial cyclic AMP response element-binding protein (CREB) mediates mitochondrial gene expression and neuronal survival. The Journal of biological chemistry 280, 40398-40401
21. Shirendeb, U., Reddy, A. P., Manczak, M., Calkins, M. J., Mao, P., Tagle, D. A., and Reddy, P. H. (2011) Abnormal mitochondrial dynamics, mitochondrial loss and mutant huntingtin oligomers in Huntington's disease: implications for selective neuronal damage. Human molecular genetics 20, 1438-1455
22. Song, W., Chen, J., Petrilli, A., Liot, G., Klinglmayr, E., Zhou, Y., Poquiz, P., Tjong, J., Pouladi, M. A., Hayden, M. R., Masliah, E., Ellisman, M., Rouiller, I., Schwarzenbacher, R., Bossy, B., Perkins, G., and Bossy-Wetzel, E. (2011) Mutant huntingtin binds the mitochondrial fission GTPase dynamin-related protein-1 and increases its enzymatic activity. Nature medicine 17, 377-382
23. Kim, J., Moody, J. P., Edgerly, C. K., Bordiuk, O. L., Cormier, K., Smith, K., Beal, M. F., and Ferrante, R. J. (2010) Mitochondrial loss, dysfunction and altered dynamics in Huntington's disease. Human molecular genetics 19, 3919-3935
24. Browne, S. E., Bowling, A. C., MacGarvey, U., Baik, M. J., Berger, S. C., Muqit, M. M., Bird, E. D., and Beal, M. F. (1997) Oxidative damage and metabolic dysfunction in Huntington's disease: selective vulnerability of the basal ganglia. Annals of neurology 41, 646-653
25. Pandey, M., Varghese, M., Sindhu, K. M., Sreetama, S., Navneet, A. K., Mohanakumar, K. P., and Usha, R. (2008) Mitochondrial NAD+-linked State 3 respiration and complex-I activity are compromised in the cerebral cortex of 3-nitropropionic acid-induced rat model of Huntington's disease. Journal of neurochemistry 104, 420-434
26. Seong, I. S., Ivanova, E., Lee, J. M., Choo, Y. S., Fossale, E., Anderson, M., Gusella, J. F., Laramie, J. M., Myers, R. H., Lesort, M., and MacDonald, M. E. (2005) HD CAG repeat implicates a dominant property of huntingtin in mitochondrial energy metabolism. Human molecular genetics 14, 2871-2880
27. Watson, L. M., Scholefield, J., Greenberg, L. J., and Wood, M. J. (2012) Polyglutamine disease: from pathogenesis to therapy. South African medical journal = Suid-Afrikaanse tydskrif vir geneeskunde 102, 481-484
28. Renna, M., Jimenez-Sanchez, M., Sarkar, S., and Rubinsztein, D. C. (2010) Chemical inducers of autophagy that enhance the clearance of mutant proteins in neurodegenerative diseases. The Journal of biological chemistry 285, 11061-11067
29. Zhang, L., Yu, J., Pan, H., Hu, P., Hao, Y., Cai, W., Zhu, H., Yu, A. D., Xie, X., Ma, D., and Yuan, J. (2007) Small molecule regulators of autophagy identified by an image-based high-throughput screen. Proceedings of the National Academy of Sciences of the United States of America 104, 19023-19028
30. Kourtis, N., and Tavernarakis, N. (2009) Autophagy and cell death in model organisms. Cell death and differentiation 16, 21-30
31. Ravikumar, B., Sarkar, S., Davies, J. E., Futter, M., Garcia-Arencibia, M., Green-Thompson, Z. W., Jimenez-Sanchez, M., Korolchuk, V. I., Lichtenberg, M., Luo, S., Massey, D. C., Menzies, F. M., Moreau, K., Narayanan, U., Renna, M., Siddiqi, F. H., Underwood, B. R., Winslow, A. R., and Rubinsztein, D. C. (2010) Regulation of mammalian autophagy in physiology and pathophysiology. Physiological reviews 90, 1383-1435
32. Harris, H., and Rubinsztein, D. C. (2012) Control of autophagy as a therapy for neurodegenerative disease. Nature reviews. Neurology 8, 108-117
33. Taylor, J. P., Hardy, J., and Fischbeck, K. H. (2002) Toxic proteins in neurodegenerative disease. Science (New York, N.Y.) 296, 1991-1995
34. Riley, B. E., and Orr, H. T. (2006) Polyglutamine neurodegenerative diseases and regulation of transcription: assembling the puzzle. Genes & development 20, 2183-2192
35. Lemasters, J. J. (2005) Selective mitochondrial autophagy, or mitophagy, as a targeted defense against oxidative stress, mitochondrial dysfunction, and aging. Rejuvenation research 8, 3-5
36. Ross, C. A., and Poirier, M. A. (2004) Protein aggregation and neurodegenerative disease. Nature medicine 10 Suppl, S10-17
37. Haass, C., and Selkoe, D. J. (2007) Soluble protein oligomers in neurodegeneration: lessons from the Alzheimer's amyloid beta-peptide. Nature reviews. Molecular cell biology 8, 101-112
38. Metcalf, D. J., Garcia-Arencibia, M., Hochfeld, W. E., and Rubinsztein, D. C. (2012) Autophagy and misfolded proteins in neurodegeneration. Experimental neurology 238, 22-28
39. Berger, Z., Ravikumar, B., Menzies, F. M., Oroz, L. G., Underwood, B. R., Pangalos, M. N., Schmitt, I., Wullner, U., Evert, B. O., O'Kane, C. J., and Rubinsztein, D. C. (2006) Rapamycin alleviates toxicity of different aggregate-prone proteins. Human molecular genetics 15, 433-442
40. Ravikumar, B., Berger, Z., Vacher, C., O'Kane, C. J., and Rubinsztein, D. C. (2006) Rapamycin pre-treatment protects against apoptosis. Human molecular genetics 15, 1209-1216
41. Sarkar, S., Ravikumar, B., Floto, R. A., and Rubinsztein, D. C. (2009) Rapamycin and mTOR-independent autophagy inducers ameliorate toxicity of polyglutamine-expanded huntingtin and related proteinopathies. Cell death and differentiation 16, 46-56
42. Chikte, S., Panchal, N., and Warnes, G. (2014) Use of LysoTracker dyes: a flow cytometric study of autophagy. Cytometry. Part A : the journal of the International Society for Analytical Cytology 85, 169-178
43. Chan, W. M., Tsoi, H., Wu, C. C., Wong, C. H., Cheng, T. C., Li, H. Y., Lau, K. F., Shaw, P. C., Perrimon, N., and Chan, H. Y. (2011) Expanded polyglutamine domain possesses nuclear export activity which modulates subcellular localization and toxicity of polyQ disease protein via exportin-1. Human molecular genetics 20, 1738-1750
第二部分
1. Madka, V., and Rao, C. V. (2011) Cancer stem cell markers as potential targets for epithelial cancers. Indian J Exp Biol 49, 826-835
2. Al-Hajj, M., Wicha, M. S., Benito-Hernandez, A., Morrison, S. J., and Clarke, M. F. (2003) Prospective identification of tumorigenic breast cancer cells. Proceedings of the National Academy of Sciences of the United States of America 100, 3983-3988
3. O'Brien, C. A., Pollett, A., Gallinger, S., and Dick, J. E. (2007) A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature 445, 106-110
4. Ricci-Vitiani, L., Lombardi, D. G., Pilozzi, E., Biffoni, M., Todaro, M., Peschle, C., and De Maria, R. (2007) Identification and expansion of human colon-cancer-initiating cells. Nature 445, 111-115
5. Maenhaut, C., Dumont, J. E., Roger, P. P., and van Staveren, W. C. (2010) Cancer stem cells: a reality, a myth, a fuzzy concept or a misnomer? An analysis. Carcinogenesis 31, 149-158
6. Puglisi, M. A., Barba, M., Corbi, M., Errico, M. F., Giorda, E., Saulnier, N., Boninsegna, A., Piscaglia, A. C., Carsetti, R., Cittadini, A., Gasbarrini, A., and Sgambato, A. (2011) Identification of Endothelin-1 and NR4A2 as CD133-regulated genes in colon cancer cells. The Journal of pathology 225, 305-314
7. Boman, B. M., Fields, J. Z., Cavanaugh, K. L., Guetter, A., and Runquist, O. A. (2008) How dysregulated colonic crypt dynamics cause stem cell overpopulation and initiate colon cancer. Cancer research 68, 3304-3313
8. Chiba, T., Kita, K., Zheng, Y. W., Yokosuka, O., Saisho, H., Iwama, A., Nakauchi, H., and Taniguchi, H. (2006) Side population purified from hepatocellular carcinoma cells harbors cancer stem cell-like properties. Hepatology (Baltimore, Md.) 44, 240-251
9. Haraguchi, N., Ohkuma, M., Sakashita, H., Matsuzaki, S., Tanaka, F., Mimori, K., Kamohara, Y., Inoue, H., and Mori, M. (2008) CD133+CD44+ population efficiently enriches colon cancer initiating cells. Annals of surgical oncology 15, 2927-2933
10. Dalerba, P., Dylla, S. J., Park, I. K., Liu, R., Wang, X., Cho, R. W., Hoey, T., Gurney, A., Huang, E. H., Simeone, D. M., Shelton, A. A., Parmiani, G., Castelli, C., and Clarke, M. F. (2007) Phenotypic characterization of human colorectal cancer stem cells. Proceedings of the National Academy of Sciences of the United States of America 104, 10158-10163
11. Huang, E. H., Hynes, M. J., Zhang, T., Ginestier, C., Dontu, G., Appelman, H., Fields, J. Z., Wicha, M. S., and Boman, B. M. (2009) Aldehyde dehydrogenase 1 is a marker for normal and malignant human colonic stem cells (SC) and tracks SC overpopulation during colon tumorigenesis. Cancer research 69, 3382-3389
12. Ma, S., Chan, K. W., Lee, T. K., Tang, K. H., Wo, J. Y., Zheng, B. J., and Guan, X. Y. (2008) Aldehyde dehydrogenase discriminates the CD133 liver cancer stem cell populations. Molecular cancer research : MCR 6, 1146-1153
13. Boman, B. M., and Huang, E. (2008) Human colon cancer stem cells: a new paradigm in gastrointestinal oncology. Journal of clinical oncology : official journal of the American Society of Clinical Oncology 26, 2828-2838
14. Huang, E. H., and Wicha, M. S. (2008) Colon cancer stem cells: implications for prevention and therapy. Trends in molecular medicine 14, 503-509
15. Sukowati, C. H., Rosso, N., Croce, L. S., and Tiribelli, C. (2010) Hepatic cancer stem cells and drug resistance: Relevance in targeted therapies for hepatocellular carcinoma. World journal of hepatology 2, 114-126
16. Watabe, T., and Miyazono, K. (2009) Roles of TGF-beta family signaling in stem cell renewal and differentiation. Cell research 19, 103-115
17. Amin, R., and Mishra, L. (2008) Liver stem cells and tgf-Beta in hepatic carcinogenesis. Gastrointestinal cancer research : GCR 2, S27-30
18. Beachy, P. A., Karhadkar, S. S., and Berman, D. M. (2004) Tissue repair and stem cell renewal in carcinogenesis. Nature 432, 324-331
19. Cheng, W. T., Xu, K., Tian, D. Y., Zhang, Z. G., Liu, L. J., and Chen, Y. (2009) Role of Hedgehog signaling pathway in proliferation and invasiveness of hepatocellular carcinoma cells. International journal of oncology 34, 829-836
20. Huang, S., He, J., Zhang, X., Bian, Y., Yang, L., Xie, G., Zhang, K., Tang, W., Stelter, A. A., Wang, Q., Zhang, H., and Xie, J. (2006) Activation of the hedgehog pathway in human hepatocellular carcinomas. Carcinogenesis 27, 1334-1340
21. Dean, M. (2006) Cancer stem cells: redefining the paradigm of cancer treatment strategies. Molecular interventions 6, 140-148
22. Reya, T., Duncan, A. W., Ailles, L., Domen, J., Scherer, D. C., Willert, K., Hintz, L., Nusse, R., and Weissman, I. L. (2003) A role for Wnt signalling in self-renewal of haematopoietic stem cells. Nature 423, 409-414
23. Yang, W., Yan, H. X., Chen, L., Liu, Q., He, Y. Q., Yu, L. X., Zhang, S. H., Huang, D. D., Tang, L., Kong, X. N., Chen, C., Liu, S. Q., Wu, M. C., and Wang, H. Y. (2008) Wnt/beta-catenin signaling contributes to activation of normal and tumorigenic liver progenitor cells. Cancer research 68, 4287-4295
24. Ali, I. U., Schriml, L. M., and Dean, M. (1999) Mutational spectra of PTEN/MMAC1 gene: a tumor suppressor with lipid phosphatase activity. Journal of the National Cancer Institute 91, 1922-1932
25. Hu, T. H., Huang, C. C., Lin, P. R., Chang, H. W., Ger, L. P., Lin, Y. W., Changchien, C. S., Lee, C. M., and Tai, M. H. (2003) Expression and prognostic role of tumor suppressor gene PTEN/MMAC1/TEP1 in hepatocellular carcinoma. Cancer 97, 1929-1940
26. He, X. C., Yin, T., Grindley, J. C., Tian, Q., Sato, T., Tao, W. A., Dirisina, R., Porter-Westpfahl, K. S., Hembree, M., Johnson, T., Wiedemann, L. M., Barrett, T. A., Hood, L., Wu, H., and Li, L. (2007) PTEN-deficient intestinal stem cells initiate intestinal polyposis. Nature genetics 39, 189-198
27. Lee, T. K., Cheung, V. C., and Ng, I. O. (2013) Liver tumor-initiating cells as a therapeutic target for hepatocellular carcinoma. Cancer letters 338, 101-109
28. Luo, H., Hao, X., Ge, C., Zhao, F., Zhu, M., Chen, T., Yao, M., He, X., and Li, J. (2010) TC21 promotes cell motility and metastasis by regulating the expression of E-cadherin and N-cadherin in hepatocellular carcinoma. International journal of oncology 37, 853-859
29. Ji, J., Yamashita, T., Budhu, A., Forgues, M., Jia, H. L., Li, C., Deng, C., Wauthier, E., Reid, L. M., Ye, Q. H., Qin, L. X., Yang, W., Wang, H. Y., Tang, Z. Y., Croce, C. M., and Wang, X. W. (2009) Identification of microRNA-181 by genome-wide screening as a critical player in EpCAM-positive hepatic cancer stem cells. Hepatology (Baltimore, Md.) 50, 472-480
30. Nowak, D., Stewart, D., and Koeffler, H. P. (2009) Differentiation therapy of leukemia: 3 decades of development. Blood 113, 3655-3665
31. Vicente Lopez, M. A., Vazquez Garcia, M. N., Entrena, A., Olmedillas Lopez, S., Garcia-Arranz, M., Garcia-Olmo, D., and Zapata, A. (2011) Low doses of bone morphogenetic protein 4 increase the survival of human adipose-derived stem cells maintaining their stemness and multipotency. Stem cells and development 20, 1011-1019
32. Zhang, L., Sun, H., Zhao, F., Lu, P., Ge, C., Li, H., Hou, H., Yan, M., Chen, T., Jiang, G., Xie, H., Cui, Y., Huang, X., Fan, J., Yao, M., and Li, J. (2012) BMP4 administration induces differentiation of CD133+ hepatic cancer stem cells, blocking their contributions to hepatocellular carcinoma. Cancer research 72, 4276-4285
33. Pardal, R., Clarke, M. F., and Morrison, S. J. (2003) Applying the principles of stem-cell biology to cancer. Nature reviews. Cancer 3, 895-902
34. Reya, T., Morrison, S. J., Clarke, M. F., and Weissman, I. L. (2001) Stem cells, cancer, and cancer stem cells. Nature 414, 105-111
35. Van Den Berg, D. J., Sharma, A. K., Bruno, E., and Hoffman, R. (1998) Role of members of the Wnt gene family in human hematopoiesis. Blood 92, 3189-3202
36. Singh, S. K., Hawkins, C., Clarke, I. D., Squire, J. A., Bayani, J., Hide, T., Henkelman, R. M., Cusimano, M. D., and Dirks, P. B. (2004) Identification of human brain tumour initiating cells. Nature 432, 396-401
37. Singh, S. K., Clarke, I. D., Terasaki, M., Bonn, V. E., Hawkins, C., Squire, J., and Dirks, P. B. (2003) Identification of a cancer stem cell in human brain tumors. Cancer research 63, 5821-5828
38. Shimano, K., Satake, M., Okaya, A., Kitanaka, J., Kitanaka, N., Takemura, M., Sakagami, M., Terada, N., and Tsujimura, T. (2003) Hepatic oval cells have the side population phenotype defined by expression of ATP-binding cassette transporter ABCG2/BCRP1. The American journal of pathology 163, 3-9
39. Chiasson, B. J., Tropepe, V., Morshead, C. M., and van der Kooy, D. (1999) Adult mammalian forebrain ependymal and subependymal cells demonstrate proliferative potential, but only subependymal cells have neural stem cell characteristics. The Journal of neuroscience : the official journal of the Society for Neuroscience 19, 4462-4471
40. Wang, M. L., Chiou, S. H., and Wu, C. W. (2013) Targeting cancer stem cells: emerging role of Nanog transcription factor. OncoTargets and therapy 6, 1207-1220
41. Stacey, D. W., and Hitomi, M. (2008) Cell cycle studies based upon quantitative image analysis. Cytometry. Part A : the journal of the International Society for Analytical Cytology 73, 270-278
42. Pardal, R., Molofsky, A. V., He, S., and Morrison, S. J. (2005) Stem cell self-renewal and cancer cell proliferation are regulated by common networks that balance the activation of proto-oncogenes and tumor suppressors. Cold Spring Harbor symposia on quantitative biology 70, 177-185
43. Treasure, J. (2005) Herbal medicine and cancer: an introductory overview. Semin Oncol Nurs 21, 177-183
44. Ruan, W. J., Lai, M. D., and Zhou, J. G. (2006) Anticancer effects of Chinese herbal medicine, science or myth? Journal of Zhejiang University. Science. B 7, 1006-1014
45. Hsu, H. Y., Yang, J. J., and Lin, C. C. (1997) Effects of oleanolic acid and ursolic acid on inhibiting tumor growth and enhancing the recovery of hematopoietic system postirradiation in mice. Cancer letters 111, 7-13
46. Tsai, S. J., and Yin, M. C. (2008) Antioxidative and anti-inflammatory protection of oleanolic acid and ursolic acid in PC12 cells. Journal of food science 73, H174-178
47. Kim, S. H., Huang, C. Y., Tsai, C. Y., Lu, S. Y., Chiu, C. C., and Fang, K. (2012) The aqueous extract of Prunella vulgaris suppresses cell invasion and migration in human liver cancer cells by attenuating matrix metalloproteinases. The American journal of Chinese medicine 40, 643-656
48. Chen, M., Chen, R., Wang, S., Tan, W., Hu, Y., Peng, X., and Wang, Y. (2013) Chemical components, pharmacological properties, and nanoparticulate delivery systems of Brucea javanica. International journal of nanomedicine 8, 85-92
49. Pu, L. P., Chen, H. P., Cao, M. A., Zhang, X. L., Gao, Q. X., Yuan, C. S., and Wang, C. M. (2013) The antiangiogenic activity of Kushecarpin D, a novel flavonoid isolated from Sophora flavescens Ait. Life sciences 93, 791-797
50. Neidhart, J. A., Derocher, D., Grever, M. R., Kraut, E. H., and Malspeis, L. (1984) Phase I trial of teroxirone. Cancer treatment reports 68, 1115-1119
51. Atassi, G., Spreafico, F., Dumont, P., Nayer, P., and Klastersky, J. (1980) Antitumoral effect in mice of a new triepoxyde derivative: 1, 3, 5-triglycidyl-s-triazinetrione (NSC 296934). Eur J Cancer 16, 1561-1567
52. Dombernowsky, P., Lund, B., and Hansen, H. H. (1983) Phase-I study of alpha-1,3,5-triglycidyl-s-triazinetrione (NSC 296934). Cancer Chemother Pharmacol 11, 59-61
53. Wang, J. P., Lin, K. H., Liu, C. Y., Yu, Y. C., Wu, P. T., Chiu, C. C., Su, C. L., Chen, K. M., and Fang, K. (2013) Teroxirone inhibited growth of human non-small cell lung cancer cells by activating p53. Toxicology and applied pharmacology 273, 110-120
59. National Institutes of Health
http://stemcells.nih.gov/staticresources/info/basics/StemCellBasics.pdf